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Summary 

Simple fluids such as gasses and liquids are the result of collisions between molecules. 
More complex fluids, such as granular flows and colloidal suspensions (non-Newtonian 
fluids), result from the more complex collision (or interaction) behaviors of their 
constituent particles. In this project we have demonstrated that collision rules can be 
constructed for large chunks of fluid material (eddies) such that the resulting collective 
system behaves like the mean (RANS) flow of a turbulent fluid. These collision rules 
are, in essence, a turbulence model. 

The project has demonstrated its three primary objectives. First, it has shown that 
modeling turbulent flow as a collection of colliding (interacting) objects (eddies) is a 
theoretically viable approach. Second, the project has shown that modeling turbulence in 
this way can be made computationally efficient and comparable to classic Reynolds stress 
transport (RST) models. Finally, the coUisional approach to turbulence modeling has 
lead to some insights into turbulence and turbulence modeling that would probably not 
have been achieved via the traditional RST approach. 

The prediction (or modeling) of turbulent fluid flow is arguably the greatest bottleneck in 
the Navy's ability to rapidly design innovative devices and respond to environmental 
threats^^. While this research does not address a specific Navy operational issue, it has an 
extremely broad impact on Navy operations and the Navy's ability to successfully 
execute its mission. 

Motivation: Why a collision model. 

The collision model is inspired by the strong analogy between granular flows and 
turbulent fluid flow. An example of a granular flow might be Cheerios in a factory being 
piped and then poured into boxes. Similarly, turbulent flow can be thought of as a 
collection of eddies that interact with their local neighbors as they are piped and poured. 
In both cases, the particles of interest are of roughly the same size as the pipes and mean 
flow length scales. This causes the resulting flows to be non-Newtonian. The behavior 
of the two flows is not identical because turbulent eddies have a range of length scales 



and Cheerios (or sand grains, or many other granular flows) have a uniform size. In 
addition, eddies and Cheerios have different interaction behaviors. 

The traditional approach to modeling turbulence or non-Newtonian fluids is to 
hypothesize equations for unknown stress tensors (in turbulence this is the Reynolds 
stress tensor). Because, the particles making up the flow are roughly the same size as the 
gradients in the mean flow these particles respond on similar timescales as the mean 
flow. This means that algebraic models are rarely predictive, and evolution equations for 
the stress tensor must be hypothesized. In turbulence, these are the Reynolds stress 
transport (RST) equations. Simpler turbulence models, such as k-e, are simplifications of 
the RST equations. Similar transport equations are hypothesized for non-Newtonian 
flows, and many turbulence modeling concepts (realizability, material frame indifference, 
tensor consistency) were borrowed directly from the non-Newtonian literature at this 
transport equation level. 

However, it has long been recognized in the non-Newtonian fluid community that 
transport equation models have serious limitations. An alternative approach is to model 
the fluid at the particle collision level rather than using a transport equation for the stress. 
This approach is more versatile, and in many ways, more fundamental. For example, 
modeling a gas as particles with binary elastic hard sphere collisions gives the Navier- 
Stokes equations and the perfect gas law when the density is high, as well as the correct 
gas behavior when the density is low (where Navier-Stokes is not valid). 

Numerical solution of collision models. 

Once a certain collision behavior has been hypothesized there are three very different 
ways to solve the particle system numerically and obtain a prediction of the fluid 
behavior. The most straightforward technique is the 'molecular dynamics' approach 
where one numerically tracks all the particles in the domain, and performs collisions 
when they occur. This approach has a computational cost equivalent to large eddy 
simulation (LES) and is not considered further. The other two approaches note that one 
does not really care what happens to individual particles but only what happens to 
particles on average. The quantity of interest then becomes the probability density 
function that describes the probability that a particle (at a certain place and time) has a 
certain velocity. The evolution of the probability distribution function,/, obeys the exact 
equation 

--—+ V,— rfl, —— — —— 
dt      9x.       9v,.    dt 

(1) 
collisions 

where a, is the acceleration due to external forces (like gravity) and the right-hand side 
describes the average affect of the collisions on the PDF. It is this average collision 
behavior that we now wish the models to predict. 

There are two different ways to solve this PDF equation. One way is to assume the 
collision model has a Fokker-Planck form (see equations 2 through 4). Then using the 
equivalence between the Fokker-Planck equation and the Langevin equation (Brownian 



motion), it is possible to construct a Lagrangian particle method. This is the approach 
extensively researched by Pope and coworkers"^' ■'^■^^. The Lagrangian particles move 
like Brownian dust particles. They move with the flow and are randomly perturbed using 
a prescription given by the model. In this way each particle is independent from all the 
others, and simply interacts with the average of all the other particles. This is less 
expensive than tracking and implementing individual collisions ('molecular dynamics' 
approach) but is still expensive because a large statistical sample of particles is required. 

The numerical approach used in this project was to solve the PDF equation using a 
standard Eularian mesh in physical space, x, as well as in velocity space, v. Normally, 
this approach would be rejected outright since 10 mesh points in each direction then 
requires a million mesh points in total and is too expensive. The resolution to this 
problem is to use an extremely coarse mesh in the velocity space (3 points in each 
direction). This means we are solving 27 equations for each point in space. For 
comparison, a RST model solves 3 velocity, 1 pressure, and 6 stress equations (10 
equations) per point in space. However, since the RST equations are highly coupled and 
nonlinear, and the PDF equations are not, the solution times are very comparable. 

A very coarse mesh in velocity space is an idea borrowed from Lattice-Boltzmann 
methods for solving the Navier-Stokes equations.   These methods solve a PDF equation 
with a very simple collision term that is intended to give Navier-Stokes (Newtonian) fluid 
behavior.     The difference here is that we solve a PDF equation with a much more 
complex collision term, which results in RANS behavior for the fluid.   The coarse mesh 
is acceptable in both cases because the interest is not in the PDF itself but in its lowest 
order moments - the mean flow and the 
stresses.       These low order moments 
can be reasonably extracted from a very 
coarse   approximation   of   the   PDF. 
Note that the Langevin  approach is 
equivalent to approximating the PDF 
with a random sample, and a large 
sample is needed even to approximate 
the low order moments reasonably well. 
The   Langevin   approach   is   slower 
because it provides more information 
(about   the   higher   order   moments). 
Unfortunately, we have little interest, in 
engineering turbulence models, in the 
extra information the Langevin solution 
method provides. 

Collision Model 

PDF Methods 

Coarse Discretization 
('lattice methods') 

Particle Tracking 
('molecular dynamics') 

Langevin Equation 

Figure 1 Taxonomy of collision model 
approaches. 

Comparison to Lattice Boltzmann Methods. 

While the approach taken in this work is inspired by the success of lattice-Boltzmann 
numerical methods, the approach is significantly different. This is because the PDF 
governing molecular interactions (Lattice-Boltmann) has a variance (width) that is much 
larger than the mean and which is essentially constant (related to the speed of sound).   In 



contrast, the PDF for turbulence has a variance which is much smaller than the mean 
(turbulence intensities are measured in percent), and which can vary significantly (in time 
or space). This is illustrated in Figure 2. 

0 0 

Figure 2. Left: typical PDF for molecules. Right: typical PDF for turbulence. 

To capture the turbulence PDF with only three points it was necessary to have a moving 
adaptive mesh in velocity space. In order to avoid losses due to interpolating one mesh 
to another as the mesh moves, we implemented a fully conservative scheme in which the 
mesh moves continuously in time (during the timestep). This uses technology previously 
developed by the PI for moving meshes in physical space'^ In actual practice the PDF 
is three-dimensional. An isosurface of an actual PDF (the 50% value) is shown in Figure 
3. This PDF is modeling the behavior of the Le Penven et al. retum-to-isotropy Case III 
> 0 experiment. Note the fairly large changes in the shape and size of the distribution 
even for this simple experiment. It can also be seen in this figure that a spherical PDF 
corresponds to isotropic turbulence. 

Figure 3.   Evolution of the 50% isosurface of the PDF for the retum-to-isotropy 
experiment of Le Penven et al. (case III > 0). 

Theoretical Analysis. 

Lundgren (1967) first derived the exact expression for the collision term in the PDF 
evolution equation for turbulence.  As might be expected, this collision term can not be 



expressed solely in terms of the PDF, and practical solution of the PDF evolution 
equation requires modeling the collision term. In this work we have focused on 
generalizations of the Fokker-Plank collision term. In its simplest form this collision 
term has the form, 

dt collision 

-lla{,-u,)fyi,li 
av, 

(2) 

where u- = fv,/Jv is the mean velocity and a and b are model constants. For turbulence 

this needs to be generalized. Pope and coworkers use the form. 

dt -l[o.^)fy^BS 
collision av. av,. dX: 

(3) 

where v' ■=v-Uj is the fluctuating velocity and the first term (the drift term) now has a 

matrix model parameter Gy, and a viscous term has been added for near wall  (low Re 
number) calculations. The conversion of these Fokker-Planck models to a Langevin 
equation for numerical solution dictates that the diffusion term (with b) be isotropic and 
not have a tensor coefficient. 

In this project we analyzed the following even more generalized Fokker Plank model. 

dt collision 
=4[°.^'./]4 av, av.. '^av,|j av,. (Jij+mj) 

af1 
a^r .J 

dX; 
1.) A 

_^ax,.Vav,. MK„ 
a(^;/^)l 

dx„ J dt mesh av, 

(4) 

The last term on the right hand side accounts (exactly) for the mesh motion. The first 
three terms involve model tensors. Sometimes, these tensors are isotropic and governed 
by a single parameter. The viscous terms account for low Reynolds number effects and 
strong inhomogeneity. They do not involve any additional parameters and were derived 
via analysis and the condition that the model be exact as it approaches a wall (in the 
laminar sub layer). 

Taking the zeroth moment of the collision term (Eqn 4) gives zero, so the zeroth moment 
of the PDF equation is the mass conservation equation. The first velocity moment of the 
modeled PDF equation gives the momentum equation. 

du„    a(M,.M„+i?„) a r       -| 

dt      ax       " 3>-L^"''-i dX: 
(5) 

This implies that the acceleration is given by   «„=-/?,„+(//«,,„),,••     The viscous 
contribution to this acceleration is necessary only if the viscosity is not constant. 



Taking the moment of the modeled PDF equation with respect to v'„ v'„ gives, 

dR„. 
dt 
-n^+^(5^ + ^ + iu^.R.^+U„,RjJ^^^ 

dx. 9x 

-(V"J+-^"AJ)+^ M- ̂
RJ jm. 

ax, 'j 
■2juKj 

dx. 

(6) 

where r„„. = Jv>'„v',./Jvand A;=|i?,.;.   The tensors Gy, H^, and J^ describe the 

model. Complex dissipation and pressure-strain models can be implemented via these 
tensors. From this analysis it is clear that any Reynolds stress transport model can also 
be implemented as a generalized Fokker-Planck collision model. 

The equation for the total resolved kinetic energy, E^ = J-jV,.v,./<iv -^/?,.,•, is 

dt     9x 
\if}^     (1) 

The resolved kinetic energy correctly looses energy as a result of large scale dissipation, 
and via turbulence production. It is completely specified and does not depend on the 
model coefficients. The details of these mathematical analyses are presented in 
Appendix A. 

Practical Implementation 

When implementing the Fokker-Planck collision model (Eqn. 4) on a coarse mesh, it is 
attractive to make the change of variables / = ln(/). If/is close to Gaussian (which is 

expected) then / will be close to parabolic. This parabola can be accurately resolved 
and interpolated by the three points available in our scheme. The evolution equation for 

/ as descirbied in Appendix B is, 

|-4^(--''|-°'-='€4 
+ ■ 

9v, dxj 3v,     dxi 

dx„    dx„jlK    Kdv,\j 

3/ I    a/ 3/ r_i_    +JU— — 
dXjj       dx^dx^ 

(8) 

While there are more terms to compute in this version, the equation for / is much more 
accurate to solve numerically. In addition, low order methods and simple difference 

stencils suffice because / is expected to be very close to quadratic. 



The models for the tensors Gy, Hy, and Jy require a time scale to be dimensionally 

correct. For this reason an additional transport equation for the timescale must be 
included in the model. We have used the standard epsilon transport equation for this 
purpose since it is very commonly used in RST models as well. 

Summary of the Model 

As shown in Appendix A, the above PDF equation results in the following turbulence 
equation. 

dt      dx,  ' "■"    dx.  """      "' dx.       "" dx.    ^  "" '"      "  ""> 

\     mn nm /      ^__ r^   ~\_^ \    m   m,i im   riyi / "^ ZS     I dx,     dx. dx,y K 

(9) 

^   
The triple correlation term,—v^v^v', is modeled by —^K ai?„ 

dX; dx,      9x 

The collision model is given by, 

'fij-~^^^p2^ij 

(10) 

(11) 

(12) 

The equivalent Reynolds stress transport equation would be, 
oi?„_     o     _        o      oR„„    /      „ T,   \ 

dt      dX; 9x       dx. 

[cus^. + cw„^.)i?^,+[cus, + ciw^^fRj^ +(c;,-i)-i?^„ ~C^,R^„  (13) 

3        pi   mn       3 p2   mn 2//- 
9A:;     dxi dxi V K Jj 

where Sy = —{u^j + M^ ,), W/, =—iu.. - u^.) + Sy^O.^^, and Q^ is the rotation rate in a 

non-inertial frame of reference, and P = -R^u^^^ is the turbulent production rate. The 

model parameters are given by 
F      V 

"'        l+FSv+v, 
C* =-0.2F' + .006- 

C' = -^ .2F      C, = -^ AF 
"'    v + v, '^    v + v, 



e = —       .,=.12- 
K + lOv m 

where F =^det(Ry Ik) is the two-component parameter. 

The transport model for the epsilon equation is fairly standard and is given by, 

dt        dx:     K dx, dx. 

where 

a, =1.43        Q,=ll/6      Q, =0.33+0.5^ 
e 

Summary of Results 

The PDF collision model (using a coarse moving mesh) was tested on isotropic decaying 
turbulence at different Reynolds numbers and rotation rates. This flow is affected by the 
epsilon equation model, but not by the PDF model. However, it is a good test of the PDF 
numerics, since the exact solutions (for a given epsilon equation model) are known. It 
was found that spacing the mesh points at 1.61 times the PDF variance was on optimal 
placement that almost eliminates numerical errors due to the coarse mesh interpolation. 
The moving mesh algorithm moves the mesh to keep it at this position even as the 
variance changes in time. 

The model was then tested on anisotropic decaying turbulence. Two different 
experiments (Le Penven et al., and Choi & Lumley) and five different data sets were used 
to evaluate the performance of the model. This is essentially a test of the models ability 
to correctly predict slow pressure-strain or retum-to-isotropy. Some very interesting 
results were produced by this study. Whereas all RST models use at least one model 
constant (and frequently two or more) to model retum-to-isotropy, the collisional 
approach to this problem resulted in a return model that performs well and has no model 
constants. This is described in detail in Appendix C, which has been submitted for 
publication. 

Next the model was tested in a variety of homogeneous shear flows. They key to 
predicting these flows correctly is in the modeling of the fast pressure-strain. A detailed 
study of the fast pressure-stain model parameters was performed. These parameters are 
often specified as constants, however they can be functions of the Reynolds stress and 
mean flow gradient tensor invariants. A wide variety of DNS and experimental cases 
were used to back out the exact values for the fast pressure-strain model parameters in 
these experiments. Both rapidly strained and slowly strained homogeneous flows were 
analyzed in this way to obtain the parameter values in both limits. With this data, 
models for the fast pressure-strain parameters were proposed. This analysis is presented 
in Appendix D. 



Finally, the model was implemented and tested in fully developed channel flow. The 
issue here is to correctly account for inhomogeneity and low Reynolds number effects. 
In this situation, the modeling of the dissipation tensor requires close attention. This term 
dominates near the wall and balances viscous diffusion. A model which accounts for 
dissipation in inhomogeneous flows was developed. It has been submitted for 
publication, and is presented in Appendix E. The method of determining the model 
constants is shown in Appendix F, and the results are in Appendices G and H. This model 
for the dissipation tensor is exact in regions of strong inhomogeneity and involves no 
model parameters. The second to last term in Eqn. 4 is due to this model. The fact that 
the model is exact in this limit is important. It means that the diffusion is exactly 
balanced at the wall, and therefore that the Reynolds stresses always have the correct 
asymptotic limits near a wall. This means that elliptic relaxation approaches are not 
required. In addition, computational stability is significantly enhanced since this is the 
region where Reynolds stresses are close to becoming unrealizable due to the numerics. 

Final Conclusions & Future Work 

This project has allowed us to demonstrate that coUisional models are a viable alternative 
to RST models. In one instance, we have even been able to remove a model parameter 
due to insights gained from this viewpoint. However, it is also clear that this approach, 
as it stands, has most of the same difficulties and limitations as RST models. In 
particular: 

• The fast pressure-strain model largely dictates the model's performance in flows 
with mean flow gradients (most flows). There are a large number of constants (a 
minimum of three), practical difficulty in modeling equilibrium and rapid limits 
within a single model, and even fundamental problems with assuming that this 
term can be modeled in terms of the available unknowns (we know in many cases 
that it can not). These difficulties are common to both RST models and the 
current collision model. 

• The scale (or epsilon) transport equation is the other source of significant error 
and parameterization (many constants). In the simple form we have so far 
studied, the collision model in no way address this issue. The same scale 
transport equation is used as in RST models. 

• Finally, although we have used Lattice-Boltzmann discretization ideas, the 
implementation of these models is not as computationally efficient as an analysis 
of Lattice-Boltzmann methods might first suggest. The fact that a moving 
adaptive mesh is required for coUisional turbulence simulations means that most 
of the speed enhancing tricks of Lattice-Boltzmann methods can no longer be 
applied. The method is therefore computationally also comparable to RST 
models. 

One important distinction between RST models and the coUisional modeling approach is 
that many of these deficiencies can actually be fixed within the coUisional framework. 



The key is to include more information in the PDF than just the velocity. By assuming 
that eddies have shape (or more specifically, orientation) as well as velocity, two major 
problems can be addressed. First, the fast pressure-strain term can now be implemented 
exactly. Since the production term is already exact, this means that the influence of the 
mean flow on the turbulence is now captured exactly (up to numerical implementation 
errors), only nonlinear (turbulence-turbulence) interactions must be modeled. Secondly, 
eddy shape provides a length scale measure, so a separate scale transport equation is no 
longer necessary. Including orientation into the collisonal model will increase the cost 
by an order of magnitude. However, the number of model parameters will also be vastly 
reduced. If the resulting model is highly predictive then the additional cost may be 
warranted and will still be far below the cost of the next alternative (large eddy 
simulation). 
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i^^^Kiidix A: Moments of the PDF Equation 

In theory, the PDF contains enough information to calculate all single point statistics 
involving the velocity. This means that from a particular collision model we can derive 
the resulting mass, momentum, total kinetic energy, and Reynolds stress equations. In 
this appendix a very general model form is assumed, and the resulting equations 
determined. 

The general PDF evolution equation is given by, 

dt      ' dX: dvj    dxj    dxj 

+ - 
3v.. 

X 9/ "I   a 
MK. 

a^„   'j 

(A.1) 
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Mass: j^[{a. + G/j) f]dv =   j [a. + G/j)fn.ds ^0 (A.22) 

By using Gauss's divergence theorem, we can convert this volume integral into a 
surface integral, where n is the normal vector to the cell face. Evaluation this 
integral over all velocity space means this term is zero, since the probability 
density function goes to zero as v foes to infinity. . 
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The first term is zero by Gauss's Theorem and the last because the average of the 
fluctuations is zero.  W„fdv = 0. 
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PDF Equation: 
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'F hat' Equation: 

^-■^^•l=}l (B.2) 

By defining 'F hat' as the natural log of the PDF function, we arrive at an equivalent 
evolution equation, which looks like the following 
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Each term is derived below based on the 'F hat' equation. 
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The resulting evolution equation for 'F hat' is: 
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i^ijpeiidix C: PDF Models for Return-to-Isotropy 

1.  Introduction 

In most turbulent flows of interest the turbulent velocity fluctuations are anisotropic, that 
is they differ in magnitude depending on their orientation. One aspect of Reynolds stress 
transport models (and other more advanced models) that distinguishes them from simple 
two-equation transport models like k-e is their ability to more accurately model 
turbulence anisotropy. The degree of anisotropy is important because it can directly 
impact how turbulence affects the mean flow. 

In the absence of any driving mechanism anisotropic turbulent flows tend to return to an 
isotropic state (the state of least order). This nonlinear process is often called retum-to- 
isotropy. It was identified early on in the development of Reynolds stress transport 
models and first modeled by Rotta*. Since that time, the retum-to-isotropy process has 
been extensively investigated and modeled^"'". 

The retum-to-isotropy problem is of significant theoretical interest in the theory of 
turbulence because it is entirely due to nonlinear interactions. The return process is 
irreversible, and is the mathematical consequence of the averaging process. As a result 
we know that the return process must be modeled, and that there can be no exact 
representation for this process in terms of Reynolds averaged variables. Existing models 
for retum-to-isotropy tend to make extensive use of mathematical concepts, such as the 
Cayley-Hamilton theorem, realizability, Taylor series expansions, and fixed point 
analysis. The resulting models invariably have a least one model 'constant' that must be 
set via experiments. 

In this work, we are interested in deriving models for the retum process based on physical 
ideas as well as the commonly used mathematical tools. We make the assumption that 
turbulence behaves as a kinetic process, and that kinetic models of turbulence may lead to 
some useful insights about the retum process. The advantage of this approach is that the 
resulting models can be made to be free of any tunable model constants. 

In Section 2, the classic Reynolds stress transport equation approach to modeling retum- 
to-isotropy is briefly reviewed. We use these classic results as a reference since this is 
the approach that is most widely understood by most readers. In Section 3 we consider 
retum-to-isotropy from the perspective of the BGK" approximation to the Boltzmann 
equation. Classic linear retum models result from this kinetic equation. The deficiencies 
of the BGK approach are largely solved by two parameter-free relaxation collision 
models developed and tested in Section 4. Section 5 investigates the predictive 
performance of these models for five different experimental cases. The relaxation model 
is extended in Section 6 to enable any desired Reynolds stress retum behavior, and 
another parameter free model is proposed that has some unique and interesting properties. 
Section 7 explores the implications and connections to the Fokker-Planck collision 



model, and the results are discussed in Section 8, where some speculation is presented as 
to what these kinetic models imply about turbulent eddy interactions.   , 

2.   Reynoldls Stress Transport Models 

In the absence of any mean flow the evolution of the Reynolds stress tensor, Ry, in 

homogeneous but anisotropic turbulence evolves according to the equation 

^ = -2vui,u)^,+p(uij+u'j,) id) 

The first term on the right-hand side is the dissipation rate tensor and the second term is 
the slow pressure-strain. The pressure-strain is considered 'slow' in this situation 
because the pressure in this term depends only on the turbulence not on the 'rapid' mean 
flow velocity gradients (since there are none in this situation). Both terms require 
modeling.  However, one half the trace of the dissipation tensor is the dissipation rate, 

£ = vuij^ui,^, which is assumed to be known (given by another transport equation model), 

and the trace of the pressure-strain term is zero in incompressible flows. 

The most common modeling approach is to assume that the dissipation tensor is close to 
isotropic. If small anisotropy in the dissipation tensor exists then it is then included with 
the pressure-strain model. The slow pressure-strain and anisotropic dissipation are then 
collectively modeled as a 'retum-to-isotropy' term. There are reasons to suggest that 
modeling dissipation anisotropy and slow pressure-strain separately is advantageous,^^ '^^ 
but for simplicity we retain the 'collective' approach described above. The simplest 
model (due to Rotta) is that the retum-to-isotropy term is proportional to the Reynolds 
stress anisotropy.   This gives a Reynolds stress transport model of the form, 

^ = -ieS,-C,£(^-iS,) (C.2) 

The 'retum-to-isotropy' term will tend to drive the Reynolds stress tensor towards an 
isotropic state as time proceeds. The rate at which this happens is govemed by the Rotta 

constant, C^. This retum model is the simplest possible, and is linear in the Reynolds 

stress anisotropy, a^ =(-jf-f 4)- Equation C.2 appears to imply retum-to-isotropy for 

any positive value of Q. In fact this is not the case, C^ must be greater than 1. To see 

this we look at the evolution equation for -jf which should tend towards -f S-,. 

The isotropic dissipation actually causes the Reynolds stress tensor to move away from 

isotropy which must be counteracted by the retum term. Cg is actually a parameter, not a 
strict constant, that can be (and often is) a function of the Reynolds stress invariants and 



turbulent Reynolds number. Due to the strict requirement described above the splitting 
Q = 1 + Q is useful. This gives a model equation of the form, 

^ = -s^-C,e{^-iS,.) (C.4) 

where Q >0. Typical values for Q lie between 0.5 and 1.0 (Durbin)^"^. Launder, Reece 

and Rodi'^ suggest a value of 0.8. No return to isotropy is the case of Cg=0. 
Physically, the no return limit appears to occur at low Reynolds numbers. In addition, 
the no-return limit is often enforced in the two component limit (where one of the 
Reynolds stress diagonals goes to zero faster than the others, such as near walls). For 
this reason C^j is often not a constant but is actually a parameter that depends on the 
turbulent Reynolds number and Reynolds stress invariants'"'^. 

It is helpful to propose a general model for the Reynolds stress evolution, 

-^ = -^[^imKj+^jmKi) (C.5) 

where the dimensionless Hy is some as yet unspecified model. Expanding this model as 

ny = ^^+riy gives 

lif=—f ^i/ - 2X" (n,>, Kj+n^„ R^i j (C.6) 

so it is clear that 11,;, is the return part of the model. The trace of the last term should be 

zero, so we have a single constraint on the model, fly Rji = 0.  It is not necessary that 

n,,- be symmetric. The explicit inclusion of the Reynolds stress in Eq. (C.5) means that 

this general model can be strongly realizable (Schumann^', Lumley^) if H,  is finite.  If 
one component of the turbulence goes to zero then this model will also make the time 
derivative of that component go to zero.   However, in the unusual circumstance that H,. 
becomes singular (goes to infinity) this model can potentially violate strong realizability. 

A 

The classic linear return model described above is given by Tly = C^(4- -^KR^^). This 
model becomes singular in the two component limit (because of the Reynolds stress 
inverse).   The classic linear model satisfies weak realizability'^ if C^ >0, but for the 
linear model to satisfy strong realizability Q must go to zero in the two component 
limit. 

Slightly more complex nonlinear models for retum-to-isotropy have the general form, 

f^ = -Q («,y) + Q (a,,a,j - a^,a^ f) (C.7) 



Cubic and higher order nonlinear models can also be represented by this quadratically 
nonlinear model due to the Cayley-Hamilton theorem. Sarkar and Speziale^ suggest 
values of Q = 0.7 and C^y = 1.05. 

The realizability conditions are clearer when this model is written in terms of the 
Reynolds stresses, 

!lL = -fR^.-{C,-CA^-i]}f{R,-jKS,) + C,i,(R,R,-^R,}       (C.8) 

Pre and post-multiplying this expression by the eigenvector matrix Q diagonalizes the 
Reynolds stress tensor (Q^RQ = D), so 

Q'fQ = -fD-{C,-Q[^-|]}f(D-f/a) + Q^(DD-^D)        (C.9) 

since Q^ ^Q = ^+Di^Q)-(^Q)T> the off diagonal evolution is trivial, and the 
diagonal components individually satisfy the right-hand side of Eq. (C.9). Weak 
realizability is satisfied as long as Q-C;^[-^^-|]>0.   Strong realizability requires 

equality on this previous expression and l+C^[-^^]>0.     The quantity -^^ appears 

frequently and is related to the second invariant of the anisotropy tensor via 
.^A = 2.4-1/7  a 

The model expression for the nonlinear return model is 

Tly = S, + {C,-C,\^-i]KS,-jKR:')-C,{^-^Sy) (CIO) 

The singularity due to /?^' is weakly realizable as long as the leading coefficient is 
positive. It is strongly realizable if this leading coefficient is zero in the 2-component 
limit and the coefficient of Sy is positive. 

3.  BGK Collision Models 

In homogeneous turbulence in the absence of mean accelerations or mean pressure 
gradients the evolution equation for the velocity probability density function (PDF) is 

t = fl (C.ll) *       '''\collisions ^ ' 

This equation governs the decay of anisotropic homogeneous turbulence, which is the 
focus of this work. One of the simplest collision models is a relaxation of the PDF to 
some known equilibrium form. 

i—^c,M-r) (C.12) 



where the constant C^^frixj) might be a function of position and time but is not a 
function of the velocity. This model is similar to the BGK approximation for collisions 
used in Lattice-Boltzmann methods. The constant Qg^ should always be greater than 0 

for a well-posed method. Unlike molecules, turbulence particles do not conserve kinetic 
energy when they collide, so the form of f"', the equilibrium target distribution, must be 
slightly different from classical theory. If we take the target distribution to be 

rHK) = ij^K) 
3v'-v' JCJL 

(C.13) 

where 0<K <K, then (as shown in Appendix I) mass and momentum are conserved and 

turbulent kinetic energy obeys the equation, ^ = -fCsaKiK-K).   This implies that 

^BGK - a-k/K)' ^^*^ ^^® dissipating collision model is 

3/_ E 
it (K-K) 

f-(i^Kr"e 

This is a model in which the PDF relaxes 
towards a spherical Gaussian PDF with 
less turbulent kinetic energy (see Figure 
1). Those portions of the PDF which are 
farthest from the target spherical 
distribution decay faster than those 
portions of the PDF which are closer to 
the target. 

(C.14) 

The equivalent Reynolds stress transport 
equation is obtained by multiplying by 
v'j v'^. and integrating over all velocities. 

This is shown in Appendix I, and results in the following equation 

Figure 1: BGK relaxation 
model. Solid line represents 
an isocontour for an 
anisotropic PDF. Dashed 
line is the spherical target 

dRij 

3r--^(^u -i^^ij^--f^ij -fwn^(^ij iKS,) (C.15) 

In terms of H, this model is Tly =^(<5y -jKR^^). Which is identical to the classic 

return model if Q = ^^^^_^^, or equivalently K = K-^^. This implies the relation 

^BGK = 1 + Q = Q between the BGK relaxation constant and the Rotta constant. 

From this analysis it can be seen that there is no return to isotropy if Cg=0 (or ^ = 0). 

Under the condition ^ = 0, /"' becomes a delta function. This observation suggests an 
alternative model of the form. 

3/_ T=-f(/-^(v'))-fc,(/-r'(^)) (C.16) 



The first term (involving a delta function) produces pure decay and the second produces 
return to isotropy with no decay (relaxation to a spherical PDF of the same energy). This 
two-part model has been proposed by Degond & Lemou^°. 

While both C.14 and C.16 result in an identical equation for the Reynolds stress evolution 
(the classic linear Rotta model), the models themselves are not identical. Differences 
exist in the evolution of the higher turbulence moments. The model given by Eq. (C.16) 
will tend to produce a spike in the PDF around its mean value (due to the delta function). 
Eq. (C.14) has a smoother influence on the PDF in general but will also produce a spike 
if Cjj goes to zero (in the two-component or low Reynolds number limits). 

Neither model has the ellipsoidal (Eq. 23) or spherical (Eq. 18) Gaussian as a solution. 
This implies that even if the turbulence starts with a Gaussian PDF it does not stay 
Gaussian. It is not a strict fact that turbulence should be Gaussian. Certainly under the 
influence of inhomogeneity we know it is not Gaussian at all. Even in homogeneous 
turbulence the tails of the PDF are not expected to be Gaussian. However, statistical 
arguments based on the central limit theorem would suggest that decaying homogeneous 
turbulence ought to be close to Gaussian or at least evolve in that direction for most of 
the core portion of the PDF. Experiments (Tavoularis & Corrsin)^^ of homogeneous 
turbulent shear flows support the hypothesis that homogeneous turbulence (even when 
sheared) has a central core that is closely approximated by an elliptical Gaussian PDF 
(sometimes called a trivariate normal distribution). 

4.   Relaxation Collision Models 

A more general form than the BGK model (Eq. C.12) for collisions is the linear 
relaxation model, 

i = g(y)-h(y)f (C.17) 

where g(v)>Oand h(v)>0 are some positive functions of the velocity (and possibly 
position and time as well). The positivity requirements keep the governing equation 
stable and the probability always greater than zero. 

In addition, the model should conserve the total probability (or mass), so that 
J g(\)d\ = I h(v)fd\, and it should not cause any mean flow to be created, implying 

\v\[g-hf]d\ = 0.     Finally the model should dissipate energy at the correct rate, 

^¥-g]dy = e. 1- 
One way to determine a suitable choice for the model functions is to insert a desired 
solution for the PDF function / and then derive the parameters from Eq. (C.17). In 
isotropic decaying turbulence there is evidence that the core of the PDF is very close to a 
Gaussian and retains this shape during the decay process (Yeung and Pope) . If we 
assume the PDF equation (17) has a Gaussian solution. 



/(v,0 = (j^^)     e   '" (C.18) 

where v '„ = v„ - M„ and M„ is the mean velocity, then taking the time derivative gives, 

^ = i±^Kr-e-'-^(l-^m (C.19) 

Comparing with Eq. (C.17) suggests that a suitable choice for the model functions is 
^(v) = /*'(v)|f-and/i(v) = |f"!^ . Actually, these functions do not conserve 
momentum or dissipate energy at the correct rate. They must be generalized slightly to, 

g(y) = C^j^(j;rkr"e-^ ;,(v) = C^ J|_iiik_ (c.20) 

where we expect C^ -^l, K ^ K, v'.^v'.-^v) when the PDF approaches a spherical 
Gaussian (Eq. (C.18)). Conservation of mass is already satisfied. Conservation of 
momentum implies a relationship exists between the hat and tilde velocities, 

{u^-u^)[2K + {u-uf] = 2R,^iu.-u,)+jv'^v'.v'Jdy (C.21) 

This implies that either M^ or M^ can be specified arbitrarily and then the other 

determined by Eq. (C.21).      The two simplest choices are Wp=Mp    which implies 

«. = ", + -T" Jv 'pV'« V '„ fd\, and u^ = u^ which implies M,. =U^+^ JV ',.V '„ v '„ fdv. In 

either case, if the PDF is symmetric then the odd order integral is zero and M = M =U . 

Since by definition v, =u.+v) =u.+v', = «,. + v',., this also implies v'. = v',. = v',. as well. 
Therefore the hat and tilde quantities in Eq. (C.20) can be viewed as a small perturbation 
imposed when the PDF is skewed (not symmetric), and are largely a formal technicality 
to enforce conservation of momentum. 

Conservation of energy imposes a relation between C^ and J^//^ (Appendix J). 

= 2kjvVv»',/Jv+i^Jv»V/Jv + («-M)^ 
(C.22) 

If/ is symmetric this simplifies considerably to f+-^f = -^ fv '^ v '^v',. v', fd\.   If/ is 
an elliptic Gaussian given by 

\^Ar,tn?   M-i/2^-i/J„-y„v„ / = [(2^y det(/?^)]-"^e-^"-^"^" (C.23) 

then  the  integral  can  be  evaluated  and  is   4K^+2R„^R^   (Appendix  K).  Then 

f = l+'^^-f-^ or perhaps even more informatively f Q =:(1+M!L_X)-I.     The 



relaxation model therefore has one free parameter (either C^, or K/K). Both of these 
parameters should go to 1 when the turbulence is isotropic (i.e. when / is a spherical 

Gaussian). Since -^^ ^ f in isotropic turbulence, forcing one of these conditions is 

sufficient to guarantee the other. 

The derivation of the equivalent Reynolds stress equation is given in Appendix J. The 
result is that Eq. (C.20) is equivalent to 

^^(/ _ e       C^ , ^^"j    2 k x \ (C24) 

if an elliptic Gaussian is assumed for the PDF. Eq. (C.24) in turn implies the return 
parameters 

Q = 
1 o      'v\l 

IK'- r , ,   ,1     and   Q = r ,;'   -i (C.25) 

or, in terms of CM, 

C,=iC^-l        and   C,=-^C^ (C.26) 

Note that this model, and the other models derived in this work, tend to imply that CN is 
less than zero. In contrast, the widely used nonlinear model of Sarkar and Speziale^ has a 
positive value for this constant. The implications of this difference are examined in 
detail in Section 8. 

Various choices of CM are possible. The simple choice Cf^ =1 leads to C^ = f, and 

Q =-f. These values produce a model which is very similar to the two models 

examined in detail below. 

The equally simple choice ^ = 1 implies 

^=i^-l  ^dC,=-^ (C.27) 

This choice of ^ implies the 'target' distribution has the same energy as the PDF but a 
spherical shape.   The performance of this model is shown in Section 5 and is referred to 

as Model-1. The realizability condition, C^-CJ^^-i] = -^^, indicates that Model- r3A_     41 _   2K^ :,auiiii_y L-uiiuiiiuu,   v^jj — «_-;vf 

1 is weakly realizable. 

In general the realizability condition for these relaxation models is 

C„-C„[-^=4=--4] = -I-/(1+-^^-T) SO choices where I- vanish in the 2-component 

limit will satisfy the strong realizability condition. The quantity F = det(R-j)/(jKf is 1 

in isotropic turbulence and 0 in the two component limit. The choice f = F means that 



CR = K/f    1 and Q = rri—i (C-28) 

The other strong realizability condition (C^ >-•^^^ when F=0) is also satisfied by this 

model. Referred to as Model-F, the performance of this model is also shown in Section 
5. This model has a target distribution that has less energy, and in this sense it is similar 
to the simple BGK model of Section 3. However, unlike the BGK model, this model has 
the spherical Gaussian as a solution, is strongly realizable, and does not produce a spike 
in the PDF in the 2-component limit. In addition, unlike the simple BGK model, the 
decay constant, h, now depends on the velocity, v, and acts preferentially on the tails of 
the distribution, damping extreme events more strongly. 

5.  Model Perfonnance 

In this section the performance of these models is compared with experimental data for 
return to isotropy. For each test case, we present both the Reynolds stresses as a function 
of time and the Reynolds stress anisotropy as a function of time. The anisotropy is the 
standard method for looking at retum-to-isotropy, since it eliminates much of the 
dependence on the dissipation. However, due to the nondimensionalization with respect 
to K the anisotropy can cause errors in one turbulence component (possibly even 
experimental errors) to appear as a general failure of the entire model. For this reason we 
retain the direct Reynolds stress decay plots as well. 

In all models the dissipation is determined from the model transport equation 

f = -C.2 4 (C.29) 

The value of CE2 is taken to be 11/6, which is the high Reynolds number analytical 
solution for turbulence with a low wavenumber k^ spectrum^*. In most of the 
experiments the initial value of the dissipation is not known, and is obtained by 
attempting to match the K profile as well as possible. 

In each case, we have solved the Reynolds stress ODE associated with the model, using 
fourth order Runge-Kutta and very small time-steps. We have also solved the 
corresponding PDF relaxation models and obtained very similar results. However, there 
are further numerical issues associated with solving the PDF equations which we do not 
wish to address here, so we simple present the ODE results in this paper. 

Because Ce2 and the return process are believed to be Reynolds number dependent we 
have selected only high Re number experiments for comparison and no DNS test cases. 
It must be noted that there is some uncertainty associated with the experimental results. 
First, while the geometry of these experiments changes abruptly from a straining section 
to a straight section, the actual cessation of the mean strain may not be quite so abrupt 
due to the long range effects of pressure. As a result, these decay experiments may have 
some residual straining in them at early times. The translation of the zero time in the Le 
Penven experiment, case in < 0, suggests that the experimenters were aware of this 



problem. More importantly, the initial turbulence for these experiments has structure, 
due to the strains imposed to make the turbulence anisotropic. It is likely that at early 
times the relaxation of these structures also affects the return process. 

Figures 2 and 3 are Le Penven et al cases m > 0 (expansion) and El < 0 (contraction). 
Figures 4, 5 and 6 are the data of Choi & Lumley^ for their cases A (plane distortion), B 
(axisymmetric expansion) and C-2 (axisymmetric contraction) respectively. 

Despite the fact that model-F is strongly realizable and Model-1 is not, the two models 
behave very similarly for all five experimental test cases. With the exception of Figure 3 
(Le Penven, case HI < 0) and Figure 6 (Choi & Lumley, case C-2) the models show poor 
agreement with the experimental data, and tend to return to isotropy too quickly. 
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time 
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0.36 

Figure 2: Reynolds Stresses and anisotropy for the case III > Ofrom Le Penven, Gence 
and Comte-Bellot. Symbols are the experimental data, lines are the Model-1 predictions, 
and the dotted lines are the Model-F predictions. 
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Figure 3: Reynolds Stresses and anisotropy for case III < Ofrom Le Penven, Gence and 
Comte-Bellot. Symbols are the experimental data, lines are the Model-1 predictions, and 
the dotted lines are the Model-F predictions. 
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Figure 4: Reynolds Stresses and anisotropy for case A of Choi and Lumley. Symbols are 
the experimental data, lines are the Model-] predictions, and the dotted lines are the 
Model-F predictions. 
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Figure S: Reynolds Stresses and anisotropy for case B of Choi and Lumley. Symbols are 
the experimental data, lines are the Model-1 predictions, and the dotted lines are the 
Mndel-F nredintinnx 
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Figure 6: Reynolds Stresses and anisotropy for case C-2 of Choi and Lumley. Symbols 
are the experimental data, lines are the Model-1 predictions, and the dotted lines are the 
Model-F predictions. 

6.   General Relaxation Models 

Rather than assuming a spherical Gaussian let us assume that the anisotropic ellipsoidal 
Gaussian (Eq. (C.23)) is a solution to the relaxation equation (Eq. (C.17)).   Then 

dl iJy det(iJ„„)   ^   3(    ^ n*^ mj 
(C.30) 

Since   i|l = -i?-'i|=.i?-'   and   idet(/?„J = det(/?„J^/?;;   (Jacobi's   formula)   this 

reduces to 

l = -i/K'-^^'v>'„)^ dRfi (C.31) 

Let us further assume that •^ = -^(n,„,i?„^+!!;„/?„,) which is the general Reynolds 

stress transport model (Eq. (C.5)). Then 

K = .^f(ri _n. i?.~'v' v' ) 
dl        2K J   {^'^ii      '■'-in '\m '' m '^ n J 

(C.32) 

This implies that for any desired Reynolds stress model, Hy, a corresponding relaxation 

model can be constructed, 

^(v)=c^n, 
_iff-'v' v' 

2K [(2;r)Met(/?^)] il/2 ,   Mv) = C^ UlnRj'mV'mV', 
2K [i+(«„-«„)(«„-5,„)/?i;'^] 

(C.33) 

When the PDF is an elliptic Gaussian we expect Cj^=\, v'„ = v'„ = v'„ , and /?„„ = R„^. 

The constant C^f can be a function of tilde and hat quantities (such as M^-M^ and 

12 



Up-Up) but it can no longer be a function of the Reynolds stress invariants (like it was in 
the simpler spherical relaxation model). This is because the elliptic Gaussian PDF 
(unlike the spherical Gaussian PDF) can represent any state of the Reynolds stress 
invariants. 

Note that the relaxation equation places constraints on the underlying Reynolds stress 
model. It implies that 11,.,. > 0, and n,„ RJn must be a positive definite tensor. 

Conservation of probability (or mass) is already satisfied by this model. Conservation of 
momentum requires a relation between M^ and M^ (see Appendix L). 

{Up -Up)[\ + {u^ -uj(u„ -«Ji?^'^l 
(C.34) 

The simplest choice is u^ = u^ then 

K=^p+^K\^\^'.^'nfdy (C.35) 

The choice Up=Up is more complicated and requires a symmetric matrix inversion 

(Uip R;^ + n,„ R;^ )(M„ - M„ ) = n,„ /?:'/?-■ |v > •„ v •„ /Jv.   For certain models (like the one 

shown below), this matrix problem is easy to invert analytically, and this choice is also 
viable. 

The Reynolds stress transport equation is derived in Appendix M. Assuming the choice 
Up = Up it requires that, 

^ =lCK^ J <^»';/^^-i-fr^.; +^^.-)-(«, -«.)(«.• -",) (C.36) 

If the PDF is an ellipsoidal Gaussian then Up = Up (by Eq. (C.35)), and C^ = 1 (by 
definition). In addition, since 

J v'„ v»'^. fdx = R^R.. +R^R^. +R„.R^, (C.37) 

Eq. (C.36) gives the correct limit, R... = R.j for an elliptic Gaussian PDF.   The hat and 

tilde quantities can be seen to be slight perturbations to the standard quantities that 
precisely account for any deviation of the PDF from an elliptic Gaussian shape. 

The model given by Eqs. (C.33)-(C.36) represents the general relaxation model. Using 
this formulation, any Reynolds stress transport model can also be implemented as a PDF 
relaxation model, that has the elliptic Gaussian as a solution.  Remember that 11,.. = ^.. 

corresponds to the case of no retum-to-isotropy, and n,^. =S-j+C,f{Sij-^KR^^) is the 

13 



classic linear retum-to-isotropy model. Substituting these expressions into Eqs. (33)- 
(36) will produce the corresponding PDF relaxation model. However, in this paper, we 
do not wish to specify 11,^., but to determine what the general relaxation model (Eqs. 

(33)-(36)) imply about how it should be specified. 
At 

The general relaxation model as described above has singular h, Up, and Ry in the two- 

component limit due to the presence of Ry\ This singularity is removed by the 

parameter-free Reynolds stress model n,^.=-^^/?^..   Making  IT,;,, directly proportional 

to the Reynolds stress tensor removes the singularities. The constant of proportionality is 
determined from the decay condition UyRy = 2K (see Section 2).   In the relaxation 

context this model is given by 

where 

(«/-M^)[2^ + (M-M)^] = 2i?^(«,-M,)+jv>'v',/^v (C.39) 

Note that Eq. (C.39) is a particular case of the general Eq. (C.34) (for this 11,^. model). It 

also happens to be identical to Eq. (C.21), the general expression for the spherical 
relaxation models in Section 4. As in Section 4, the choice of M^ = u^ or u^ = u^ is up to 

the user. For symmetric PDFs if makes no difference what the choice is, since then 
u^=Up=Up.   For inhomogeneous flows, the PDFs will be skewed and this choice may 

make some difference. 

For this model we also require the condition on Ry that, 

\Ry+(u,-u.)(Uj-Uj)+^^^^p^K + (u-uf] 

= jv\v\v\v'jfdy + (u„-ujjv\v\v'jfdy + Ry(u-uf 

This model (Eqs. (C.38)-(C.40)) differs from those in Section 4 in that it has the 
ellipsoidal Gaussian as a solution. 

The choices for C^^ are now far more restrictive. The simplest choice is simply to set 

Cm -i.   Eqs. (C.40) and (C.39) are simplified considerably by choosing Up=Up. Then 

the      hat      quantities      are      defined      by       ^p^u^+j^ \v'pV\v\fdv       and 

14 



The equivalent Reynolds stress transport model can be derived from this relaxation model 
by assuming the PDF is an elliptic Gaussian. Under this assumption, the various 
possible choices of the hat and tilde quantities are irrelevant and we find that all these 
choices are equivalent to, 

which implies the model parameters are, 

Q=f^-landC,=-^ (42) 

We note that this model satisfies the strong realizability constraint, C^ -C^[-^=^-f] = 0, 

and sits on the cusp of the strong realizability condition C^j > —^^ •     In the 2- 

component limit, this model returns to isotropy as slowly as physically possible. The 
performance of this model is shown below and it is referred to as Model-EG (for elliptic 
Gaussian). The fact that the resulting Reynolds stress model is very simple, entirely 
nonlinear, contains no model parameters, and satisfies strong realizability at its cusp, 
makes Model-EG very intriguing. 

In Figures 7 through 11 the performance of Model-EG is compared with experimental 
data for retum-to-isotropy, the classic linear Rotta model (with C^ =0.8), and the 
nonlinear model of Sarkar and Speziale (C^j =0.7, C^y =1.05). The most interesting 
result is that these three very different models perform very similarly for all five test 
cases. The Sarkar and Speziale is slightly better than the other two, but it has two 
adjustable model constants that were tuned to exactly these test cases. The linear Rotta 
model also performs surprisingly well. It can be made even better by adjusting the 
standard value (0.8) downwards (to 0.7 or 0.6). Model-EG matches the data the least 
well, but gives quite good agreement considering there afe no adjustable parameters in 
this model. 
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As noted earlier, the greatest uncertainty in both the models and the experiments lies in 
the initial conditions. To see that the assessment of the models performance is not 
affected by these initial conditions Figure 8 was recalculated using a later time for 
initialization. Figure 12 shows that the point of initialization does not fundamentally 
change the results. 
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We conclude this section by noting that other return models have been proposed that are 
nonlinear, that parameterize C^ and C^f as functions of the Reynolds stress invariants (or 
anisotropy invariants), and vi'hich satisfy strong realizability*'^^. However, these models 
assume that Q and Q are polynomial functions of the invariants. In contrast, the 
model described above uses linear rational polynomial functions of the invariants to 
represent the return parameters C^j and Q. We note that rational polynomials tend to 
have better fitting properties than polynomials, and that the formulated rational 
polynomials are the result of physical assumptions not assumptions about functional 
behavior. 

7.   Fokker-Planck Collision Models 

An alternative to relaxation models is the Fokker-Planck collision model. This model is 
frequently used to model Brownian motion, liquid collisions, and some plasmas. 
Langevin models for turbulence^^'^^, are directly related to the Fokker-Planck equation 
and therefore effectively use this type of model. A generalized Fokker-Planck collision 
operator involves two as yet unspecified matrices, Gy and Hy. 

Sf   _ 3(.GgV'jf) 

BV, 
(C.43) 

The tensor Hy should be positive definite for stability reasons. In Langevin models it is 

convenient to make  Hy  isotropic as well. However, in general the Fokker-Planck 

collision model has considerable flexibility in the choice of both the model tensors. The 
model automatically satisfies conservation of probability and momentum. It also has the 
ellipsoidal Gaussian as a solution^l      Multiplying equation (C.43) by v'„v'„ and 
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integrating over all velocity space gives the equivalent Reynolds stress transport 
equation. 

^ = G„,^,„+G„,/?,.„+i/„„+//„„ (C.44) 

By comparing this with the generic Reynolds stress transport equation, (Eq. (C.5)) it can 
be seen that, 

In this way, classic return models (given in terms of Ily) can be implemented in the 
generalized Fokker-Planck context. This transformation is also discussed in Pope'^. The 
general nonlinear Reynolds stress return model (Eq. (C.8)) is equivalent to 

n,=S,+{c, + C,[i-^]}iS,j-jKR-')-C,[^-^S,) (C.46) 

In the Fokker-Planck context this implies that 

G,+H,„R;: =-^, +{c,+C,[i-^]}(Sy -JKR:^)-C, {^-^Sy)]      (C.47) 

There are many possible choices of Gy and Hy which satisfy this constraint. 

The simplest and most numerically attractive choice for H^ is that this tensor is 

isotropic, H^ = C^eSy where C^ is an arbitrary model constant. This means that 

G,=-^[(l+C,+fC^)^.-C^^]+f(C, + C^[f-^]-3CJi?-' (C.48) 

The singularity in Gy is removed by the particular choice 3C^ = Cg + Ci^[j-^^], 
which is the choice used in most Langevin turbulence models. This gives the following 
model constants, 

H,=[c, + C,(i-^)]iSy and Gy=-^[(UC,)Sy + CAiSy-^)]       (C.49) 

Note that with this choice the realizability constraint C^+Cj^ij-^^]>0 is equivalent 

to the requirement that Hy be positive definite. Under these circumstances, the classic 

linear return model (with Q=0) is obtained using Gy=--^(l + Cg)Sy and 

Him =iCAm- Model-1 given in Section 4 (with C^ =f^-1 and C^ =-^), is 

obtained using   Hy=(-^)iSy     and  Gy=-^{-^)[Sy+^].       Model-F (with 
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G.^. =:__^r<5|^. +±1/ri+.fe^_i7l. Note that in the 2-component limit Hy now goes to 

zero.   This particular splitting (Eq. (7.7)) will be unstable in this limit. Model-EG (with 

C«=f^-l^"d C,=-^) is obtained using H,=0 and G,=-^(^)^. 

This model is therefore incompatible with this splitting (unstable). If Hy is assumed to 

be isotropic (and non-zero), then Gy must become singular in the 2-component limit. 

A more general splitting is possible if Hy is allowed to be anisotropic. Classic Langevin 

models require isotropic Hy, but the Fokker-Planck model itself only requires Hy to be 

positive definite. Assuming a positive definite form, Hy = C^eSy + Q fRy implies 

Gy=-^il + C,+iC,+2C,)Sy+iC,-3C,)iRy'+C,-^Ry (C.50) 

where C^ =Cj^+Ci^(j-'^f^). Again, to remove the near singularity C^ = jQ can be 

chosen, but because of the more general form for Hy the (realizability) restriction 

Q > 0 is no longer required for a well posed model. The classic linear return model is 

obtained using G^. =-■^(l + C^j+lC^)*^^. and H,>„ =f Q^-^+Q-f-i?^..   Note that this 

splitting has an extra free parameter C^ which does not change the Reynolds stress 
evolution, but does change the model. A nonsingular splitting for Model-EG (with 
C«=f^-1   and   C^=-^)   is   now   given   by   G^=-^/?^-fQ4   and 

Hy =-jCERy, where Q is again an arbitrary parameter. Note that C^ can actually be 

determined by a dispersion analysis and is related to the Kolmorgorov constant. 

8.  Discussion 

The retum-to-isotropy problem of anisotropic turbulence has been studied via three very 
different collision models for the evolution of the velocity PDF. The simplest collision 
operator is the BGK approximation to the Boltzmann collision integral. This collision 
model, -fCgQf.(f-f'^), is characterized by an inverse timescale (which does not 
depend on the velocity). It was shown that if this model is to dissipate energy correctly, 
the target state must have considerably less energy than the current PDF state. Some 
models even use a target state with zero energy (a delta function). The BGK model 
produces the classic linear retum-to-isotropy model, with the rate of return Cg =    *. 

determined by the energy of the target state. The Gaussian PDF is not a solution of the 
BGK model even though theoretical and experimental evidence might suggest that this is 
desirable. 
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To overcome the limitations of the BGK model, more general relaxation models were 
constructed in which the collision operator g(v)-h(v)f has a positive-definite velocity 
dependent source term and a velocity dependent sink term that is proportional to the PDF. 
Previous analysis of this collision model in the context of turbulence is unknown to the 
authors. In Section 4 prescriptions for the model parameters g and h were derived such 
that the spherical Gaussian is a solution to the evolution equation. Two models were 
derived from this analysis, Model-1 assumed that the target distribution has the same 
energy as the PDF, Y = 1. It is only weakly realizable. Model-F assumed that the 

target distribution has less energy than the PDF in the ratio Y-^ ■ This ratio was 
chosen because it makes the resulting model strongly realizable.  While these models 

While these initial parameter-free relaxation models did not perform as well as might be 
hoped, they set the stage for the development of Model-EG. This model was shown to 
be the only nonsingular relaxation model that has the elliptic Gaussian as a solution. The 
equivalent Reynolds stress transport model is totally nonlinear in the Reynolds stresses 
and was shown to be strongly realizable. Interestingly, the performance of Model-EG is 
quite similar to the linear return to isotropy model. Even the Sarkar and Speziale model 
with an opposite sign for the nonlinear term, Q, performs similarly. 

To investigate these models further, their trajectories on the anisotropy invariant map 
were plotted, and are presented in Figure 13. It is well known that the linear Rotta model 
has linear trajectories when plotted on this anisotropy invariant map. The trajectories of 
the model of Sarkar and Speziale tend to move downwards and from left to right on this 
map. This means that turbulence with two large Reynolds stresses and one small stress 
will tend to first approach a state with only one large stress before approaching full 
isotropy. This implies that the intermediate stress decays faster than the maximum and 
minimum stresses, and is somewhat counter intuitive. The models developed in this 
paper tend to have the opposite behavior. Turbulence with one large stress will first 
decay to a state with two large stresses before approaching total isotropy. There is no 
experimental data in the middle of the triangle that allows us to determine which behavior 
is actually correct. 

The top boundary of the 'triangle' is the 2-comp6nent line. The strongly realizable 
models have trajectories that stay on this line and move to the left if they start on the 2- 
component line. This means that if one coniponent of the turbulence is zero it stays zero 
for all time, and the two non-zero stresses approach each other (mutual isotropy). This 
is the expected behavior for two-dimensional turbulence, which is sometimes (but by no 
means always) found when the turbulence is two-component. More information about 
the turbulence (than the Reynolds stress) is clearly necessary to make return models 
behave correctly in the 2-component limit. Strong realizability seems appropriate when 
the 2-component turbulence is also two dimensional, and weak realizability seems 
appropriate otherwise. 
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(c) (d) 

Figure 13: Invariant triangle, (a) Sarkar and Speziale, (b) Model-1, (c) Model-F, (d) Model-EG. 

Finally, the relationship between the relaxation models and the Fokker-Planck collision 

model ( w^'^'w^^ijw'^ ^^ investigated.      Like the general relaxation model 

(Section 6) the Fokker-Planck model has the ellipsoidal Gaussian as a solution. Because 
it involves derivatives in velocity space, the Fokker-Planck model is more difficult to 
implement numerically than relaxation models. However, the Fokker-Planck model 
(with isotropic H^^) has a direct correspondence with the Langevin models.   Examination 
of Model-EG in this context showed that this model can not be implemented with 
isotropic H-j.   Instead, the diffusion coefficient H^ must be proportional to Ry. 

It is not entirely clear that high Reynolds number decaying anisotropic turbulence should 
retain exactly an ellipsoidal Gaussian distribution during the return process. Nevertheless 
the assumption of ellipsoidal Gaussian evolution is probably a very good starting point 
that applies everywhere but the PDF tails. It has lead to the development of a novel 
parameter free retum-to-isotropy model with interesting properties, and reasonable 
agreement with the data. 
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^^9)eiidix D: Fast Pressure-Strain Modeling 

The pressure strain is an important term in turbulence modeling. We are modeling the 
two pressure related terms (pressure-strain and pressure-transport) together as a pressure- 
gradient velocity correlation given by Hy • 

n.. =_px^+M)-3(Zi)_M) =^,_(3r ^S:, (D.i) 
dXj     dX; dXj dX; dXj      dx,. 

In the standard approach, fly is modeled as rapid and slow pressure strain separately. 

Analysis(cf. Chou 1945) shows that in homogenous turbulence the rapid pressure term in 
the Reynolds stress equations is given by, 

where M is the fourth rank tensor given by. 

The problem is therefore reduced to modeling the fourth rank tensor, M, which 
possesses the following symmetry, incompressibility, and amplitude constraints, 

(D.2) 

The first two constraints directly affect the resulting pressure-strain tensor and must be 
satisfied by any model. The last two constraints are true of the exact M tensor but do not 
have to be satisfied in order to obtain a viable pressure-strain model. Durbin, in his book, 
has argued that satisfying the third constraint is overly restrictive for single point closure 
models. Further constraints, such as realizability of the pressure-strain term or invariance 
to system rotation in the 2D limit (limited MFI) can also be imposed. Realizabity 
[Shuman] requires that when a Reynolds stress (in the principal or diagonal coordinate 
system) is zero then the pressure strain term does not cause the Reynolds stress to be 
come negative, which would be unphysical. The realizability constraint is an issue only 
for two component (2C) turbulence where one Reynolds stress is zero. It can be satisfied 
by making certain parameters in the model proportional to the two component parameter 
F(which is 0 in the 2C limit and 1 in isotropic turbulence). 

The standard approach is to model M as a tensor expansion in terms of the identity tensor 

Sy and the dimensionless Reynolds stress anisotropy tensor, fly=-^-f^, where 

K = ^Ri. is the turbulent kinetic energy. Launder(1975), proposed the most general 
linear expansion.     The anisotropy tensor is not linear in the Reynolds stresses, but 

M,p, = ^m 
^u. = 0 

^ijpp 
= 0 

^lpp<l 
= 2i?. 



Ka.. = R -^S K is linear and this is how the anisotropy terms appear in the final model. 

Higher order expansion in the anisotropy tensor allows the model to satisfy realizability 
and all the incompressibility constraints. The Cayley-Hamilton theorem allows one to 
truncate the expansion at third order in the tensors. The expansion to this order is 
performed in Johanson et al. The scalar parameters in the expansion are functions of the 
invariants, and Johannson et al assume these functions are low order polynomials in the 
invariants. 

In this work a simple linear model will be used, to maintain model simplicity. However, 
unlike LRR, the model parameters will not be constants and will be functions of the 
turbulence. 

We begin by looking at the basic linear model in which M is expanded in terms of the 
Reynolds stress gradients and identity tensor. 

+ B,RyS^^ + B,SyR^^ +B,(R,^Sj^+Rj^S,^HB,(R,/j^ +Rj/,^) 

This is the most general linear expansion of M that satisfies the constraints given by the 
first constraint in equation (D.2). Imposing the first incompressibility constraint (second 
constraint in equation (D.2) gives, 
3A, + 2A,+2KB,=0 

352+253+2^4=0 
So the most general rapid pressure-strain model in which M is a linear function of only 
the Reynolds stresses contains four unknown functions and is given by 

+ B,(R,^Sj^+Rj^S,^-^SyR^^) + B,(R,^Sj^+Rj,^-jS,R^^) 

If this model is going to be strictly linear in the Reynolds stress tensor and the unknown 
functions are only ftmctions of the Reynolds stress invariants then the functions are 
highly constrained and A2°^ K and the Bs must be constants. However, in this model 
this condition will be relaxed and parameters will be allowed to be functions. For 
incompressible mean flows the term involving 5, does not appear in the pressure-strain 
model and there are only three unknown functions. 
„ du.    dU. dU„        dU„   , ,      dU„ 

' ' ' (D.6) 

This equation is can be presented in an alternative form, 
n, =4A,S,+2{B, + B,)iR,^S^j +Rj^S^, .15,R^^S^^) + 1{B,-B,){R.,;^^, +/?^,W^,)    (D.7) 

dU-    dU. dU.    ^U- 
where .5,^ =| (-—'-+-—^) and  Wy =i(-r-' r-^).    In general, this linear model 

oXj      oXj oXj      aXj 

satisfies only the most basic constraints on the M tensor. 



We are modeling this Yly as, 

n, = C;KS,+C;,(R,S^J+RJ^S^, -IS^.R^^S^^)+C;,(R,W^J +RJ^W^,) (D.8) 

where, 
ClK=4A 

C;,=2(B,+B,) (D.9) 

C;,=2(B,-B,) 

Cp2, C* andC^2 are parameters to be determined. 
The classic model for the slow pressure term in the Reynolds stress equations is the 
Rotta(1951) return to isotropy model given by, 

nr=-C,^(R,-^KS,) (D.IO) 

Return to isotropy has been shown to occur in homogenous turbulence in the experiments 
of Lumley & Newman (1977). Speziale(1991) uses a C, which depends on the 
prediction. We follow his example in this work and define, 

C,=C,,+ C;,2^ (D.ll) 
£ 

where we found that €'^2 = -C^j • 
The slow pressure strain model then given by, 

n/"''= -(€,,-C;,i)^(Ry-^KS,) (D.12) 

The model developed above is for homogenous (or quasi-homogenous) turbulence. As 
with the dissipation model it is likely that we need an additional term near wall to take 
into consideration inhomogeneities. We are using near wall term developed by Amitabh 
in his master's thesis (2001) by working on asymptotic analysis. 

R   / 
~.^ 7)(  'j/  "\ 

The new term that is proposed is -v- -^-^, adding this term in (D.12) gives, 

■~ '^f a / \ 
TT  slow ,^' „s    P\  ^  ^n 2        „ oK "V    /]^) 

Adding the slow and fast pressure terms we get, 

£ K^ "    3     "'      dx,    dx, 
-(C,,-C;2-^)-(R,--KSy)-v-. 

From above equation(D.14) with dissipation tensor (described in Appendix E), we get 



-(c,,-c;A^(R,-^KS,) 

-    Rli        2   ^ £   ^ ^*„    r. 
+(1 - a)£(-^ - - S,) -—/?,. -CSyK 

' ^K    3  '     K   ' ' (D.15) 

-2v 

Combining terms, we get, 

(R.S,+R.^S..+ 
K 

nr' -^ij=cl,Ks,+c;,iR,s,+Rj^s, +LR^.)+C;,(R,W,+RJ^W,) 

(D.16) 
+C^^(l-a)i(^S,-^)-^R, 

Where, 

c;,=^(c;-c') (D.17) 

(C,,-l)(l-c^) = C;„ (D.18) 



i^^ipendk E: A Model for the Dissipation Rate Tensor in 

Inhomogeneous and Anisotropie Hirbulence 

Summary 

By including terms that depend on gradients a dissipation model is developed that is 
exact in the limit of very strong inhomogeneity (such as near solid walls or free-surfaces). 
Rapid distortion theory (RDT) and equilibrium theory are used to motivate the 
anisotropie terms in the model. The resulting model has only one free constant (from the 
equilibrium theory) which is determined via comparisons with turbulent channel flow at 
Re=590. A priori tests of the model for two shear-free boundary layers, channel flow at 
lower Reynolds numbers, and a backward facing step are presented. Full simulations 
using the model in channel flow are also performed. Comparisons are made with a 
variety of existing tensor dissipation rate models. 

1. Introduction 

Reynolds stress transport (RST) equation closures for turbulence (also referred to as 
single-point second-moment closures) are theoretically capable of predicting a wide 
variety of complex industrial flows. However, after many years of development RST are 
still not widely used in industrial applications. This may be because in practice RST 
models often do not perform significantly better than two equation models in complex 
flows. Why has the potential of RST models not been achieved? One possible 
explanation is that the development of RST models is largely based on quasi- 
homogeneous or quasi-isotropic assumptions^'^. These assumptions are frequently not 
applicable in engineering flows, particularly those involving walls. 

In this work, the modeling of strongly inhomogeneous turbulence is explored, hi 
particular, the focus of this paper is on the modeling of one of the unclosed terms in the 
RST equations, often referred to as the dissipation rate tensor. As pointed out in 
Bradshaw & Perot^, this tensor is not actually equal to the dissipation rate in 
inhomogeneous turbulent flows (the case of interest in this paper), so for brevity and 
historical reasons we simply refer to this tensor as the dissipation tensor in this paper. 
Our particular interest in the dissipation tensor is due to the fact that this term dominates 
in the region near a wall. Correct prediction of the dissipation tensor is therefore an 
important first step towards accurate RST models for complex wall bounded turbulent 
flows. 

The Reynolds stress transport equation can be written as, 
DR,, 
-^ = -(R.f/M+R;A.)+vR,.«-e,+n,-lv,, (E.1) 

The first term on the right hand side is the production term. It does not need to be 
modeled. The next two terms are the viscous diffusion and dissipation (rate) terms. The 
diffusion term does not require a model,  and the dissipation term is given by 



e,. = Ivu'i^Uj ^. This dissipation term is the focus of this paper. The final two terms, the 

pressure-gradient velocity correlation Ily =-(Pj«' + P,'"y)> and the turbulent transport 

term %;^ = u-UjU^ also require models. Near a wall, the turbulent transport is small and is 

not critical. The pressure-gradient velocity correlation (closely related to the pressure- 
strain term) is important just away from the wall. 

Early models for the dissipation tensor'^'^ assumed that the dissipation tensor was 
isotropic and given by the expression e,y =-f f^y. Note that the dissipation, f, is a scalar 

equal to one half of the trace of the dissipation tensor. The scalar dissipation is assumed 
to be a known quantity that is determined by its own transport equation. The assumption 
of isotropy is based on the argument that large velocity derivatives should primarily 
occur at the smallest turbulence scales and turbulence is thought to be isotropic at the 
smallest scales (Kolmogorov^). 

While small-scale isotropy of turbulence has support from some experiments^, it is 
contradicted by some others^''°. The recent theoretical analyses of Hallback et al}^ and 
Durbin & Speziale^^ suggest that under the action of mean velocity gradients, even the 
smallest scales and hence the dissipation tensor must become anisotropic. Brasseur*^ 
discusses the issue in detail. 

Since it is now widely recognized that the dissipation tensor is not isotropic in practice, it 
is often argued that the dissipation anisotropy should be modeled along with the pressure- 
gradient velocity correlation following the practice of Lumley & Newman'"*. There is, 
indeed, significant evidence to suggest that the slow pressure-strain correlation and the 
dissipation tensor anisotropy are closely related. However, it should be observed that the 
dependence is one way. The pressure terms respond to, and tend to counteract the 
production and dissipation terms. Fast pressure-strain reduces the production anisotropy, 
and slow pressure-stain counteracts the dissipation anisotropy. In order to develop 
effective slow pressure-strain models it is important to be able to model the dissipation 
tensor anisotropy first. 

Some insight into the dissipation tensor anisotropy in homogeneous turbulence can be 
obtained by using a Fourier decomposition of the fluctuating velocity field.    The 

dissipation tensor can then be written as By = J Ivk^u'uj dk. If the turbulence exists 

almost entirely at one wavenumber magnitude then k^ can be removed from the integral 
and By =2vk^Ry, or solving in terms of the scalar dissipation e,-,- =YR,y. This model 

was first proposed by Rotta'^. It suggests that the dissipation anisotropy is equal to the 

Reynolds stress anisotropy, Cy =^-i^y=^-^^y=ciy. In decaying turbulence, at low 

turbulent Reynolds numbers only the large-scale structures (a single significant k 
magnitude) exists and this model for the dissipation tensor becomes exact. The Rotta 
model is therefore frequently referred to as the low Reynolds number limit. However, it 
should be noted that in many low turbulent Reynolds numbers situations (such as near 
walls) this critical hypothesis of a single wave number magnitude is not satisfied. 



A number of dissipation tensor models'^''^ are based on the idea of blending the isotropic 
model and the Rotta model using a function that depends on the turbulent Reynolds 
number. These models have the form, 
f, =(l-/)f £^, +/f i?, =f f^. +/fa, (E.2) 

where / is 1 at low turbulent Reynolds numbers and 0 at high Reynolds numbers. The 

model of Hanjalic & Launder'^ used/= 1/(1+ 0.1-|-). This model did not show very 

good agreement with DNS data of channel flow at Re=180'^ where the simpler 
expression  / = 1  (i.e. the Rotta model) was shown to perform better.      Hallback, 

Johansson & Burden   proposed / = 1/(1+^—7^) where L^ is the integral length scale. 

Note that the turbulent Reynolds number approaches zero near a wall, so any formulation 
that uses a Reynolds number dependent blending function (such as those described 
above) will go from approximately isotropic dissipation in the free-stream to the Rotta 
model near the wall. An asymptotic expansion of the dissipation tensor near the wall 
(Section 3) shows that the Rotta model captures the zeroth order terms correctly at a wall, 
so these models show improvement over pure isotropic dissipation for wall bounded 
flows. 

Other researchers^"'^' have proposed using models other than the Rotta model for the near 
wall (or low Reynolds number) region. These models have the form, f,.. =f f^- +fe^''", 

where the wall model ej''"is trace free. Often, e^"" is defined in terms of the wall 

normal vector, which is ill-defined away from the wall or at comers. In addition, in these 
models the form of Cy"" is formulated specifically for walls and is incorrect at a free- 
surface or at any other boundary other than a wall. 

While Reynolds number dependent models capture the near wall region better, they all 
revert to the isotropic model at high Re numbers and evidence suggests that even in the 
high Re limit the dissipation tensor is not isotropic. In the rapid distortion limit Hallback 
et al. have shown that the dissipation tensor anisotropy is not zero, but half of the 
Reynolds stress anisotropy. The work of Speziale & Gatski^^ suggests that in equilibrium 
the dissipation tensor anisotropy should depend on the shear-stress. Finally, Perot^^ has 
shown that these Reynolds number dependent models are not correct for boundaries other 
than walls, such as slip walls or free-surfaces. 

In order to account for the RDT limit Hallback, Groth & Johansson" (HGJ) proposed a 
nonlinear dissipation tensor model. This model adds an additional term proportional to 
the square of the anisotropy and has the form 

e.y =j£^ij+ M^ij + fi^ia^k^^kj -\Ih^ij) (E.3) 

where //„ =a^.fl^, and the functions are given by/, =i+f//, and /^ =-|. This model is 

realizable, meaning that the dissipation tensor in a certain direction is zero if the 
turbulence in that direction is zero.    A similar model that depends on the two- 

componentality parameter, F = det(^) was suggested by Sjogren & Johansson^^ (SJ). 

The two-componentality factor F is 1 in isotropic turbulence and 0 in two-component 
(2C) turbulence such as near a wall or a free-surface.   In the SJ model /, = 1-0.67F and 



/j =-1.18F. This model goes to the Rotta model in the 2C limit, but does not satisfy 
the RDT condition that the dissipation anisotropy is half the Reynolds stress anisotropy 
under the action of large mean strains. These more complex models perform well (away 
from boundaries) and will be used for comparison in Section 5 where the model 
performance is evaluated. 

Speziale & Gatski^^ have proposed an algebraic formulation for the dissipation tensor that 
is similar in construction to algebraic models for the Reynolds stress tensor. In the 
resulting model the dissipation tensor anisotropy is solely a function of the mean velocity 
gradients. Unfortunately, the resulting model reverts to the (incorrect) isotropic model in 
the absence of mean velocity gradients. This model is therefore incapable of representing 
the shear-free boundary layers studied in Section 5. However, the basic premise of using 
mean velocity gradients to parameterize the dissipation anisotropy (particularly in the 
equilibrium limit) is a reasonable idea which is adopted later. 

Transport equations for the dissipation tensor can also be formulated^^"^''. The Speziale & 
Gatski model mentioned above is a simplification of such a transport equation. However, 
this level of complexity may be unwarranted at this time given the level of model 
uncertainty in the other RST model terms (particularly the pressure-strain). 

In Section 2 of this paper, near boundary terms for the dissipation tensor are developed 
that are accurate near walls and surfaces. These near wall terms are derived from first 
principles and introduce no model constants. Section 3 analyzes the near wall 
asymptotics of these models near both walls and free-surfaces, and considers the limit of 
strong inhomogeneity. In Section 4 the model development in regions away from 
boundaries is considered. A priori tests of the model are presented in Section 5 and 
compared with a variety of existing model formulations. A brief discussion and 
conclusions appear in Section 6. 

2. Modeling Strong Inhomogeneity 

In strongly inhomogeneous flows, turbulent correlations such as the dissipation tensor 
change rapidly as a ftmction of their position. Some of the change with position is due a 
change in the underlying structure of the turbulence. However, most of the change is 
simply due to the spatial change in the turbulence intensity.   In the specific case of the 
dissipation tensor, e,-, = Ivu'j^Ujj^, the dissipation can change spatially for two reasons. 
Either the gradients correlate differently, or (more likely) the magnitude of the velocity 
fluctuations has simply changed. These different effects can be isolated by using the 
following decomposition. Let the fluctuating velocity be decomposed as u' = Q.ii■. The 

tensor  Qyis assumed to be a known quantity (related to the velocity fluctuation 
magnitude). It is an average quantity and does not change in time for statistically steady 
flows or along homogeneous directions. The underlying temporal and spatial fluctuations 
of the velocity field are captured by the dimensionless quantity Hj.   Changes in the 



dissipation due to changes in the turbulence magnitude will be captured by Qy. Changes 

in the underlying turbulent structure will be manifest in Uj. 

Substituting this formula into the equation for the Reynolds stress tensor gives a 
relationship between the structure correlation and the Reynolds stress tensor. 
R.. = u'u- = O uO u  = 0 uu 0■ (EA^ 

The magnitude tensor is not a fluctuating quantity and therefore can come out of the 
average. Substituting this decomposition into the dissipation tensor formula gives, 

jm,K   m      x^jm 

.   \.(u = '2-V{Qin.,Qj„,,uJu„ +\iQinQjm)^<K),, (E.5) 

If it is required that g^, be invertible then the first two terms in the expression can be 
found from Eqn. (E.4) and are exact. The third term is the dissipation of the velocity 
structure. It requires a model. However, the velocity structure is quasi-homogeneous 
(by design), and so standard dissipation models are expected to perform well in this 
context. The final term is the product of two differences. It is assumed to be small and 
evidence to that effect can be found in Perot & yioin?^ In regions of strong 
inhomogeneity the first term dominates and Eqn. (E.5) becomes exact irrespective of the 
model used for the third term in Eqn. (E.5) or the size of the fourth term. 

One possible definition for <2y is that it represents all the magnitude information (Perot, 

& Moin,^'). In this case M„M„ = S^^ and Eqn (E.4) becomes R.^ = Q.^Q.^ or R = QQ^ and 
Q is the matrix square root of the Reynolds stress tensor. This definition of Q is actually 
not unique, Q can be symmetric or lower triangular for example. The symmetric square 
root however, seems to be the most natural. Like regular square roots, the sign of Q is 
also not well defined. Since Q always appears in pairs, this distinction is not important. 
With this definition of Q , the second term of Eqn (E.5) is identically zero, and the model 
is given by 
e,; = 2va„,,Q;„,t + QinKMjm (E.6) 
where the fourth term of Eqn. (E.5) is assumed to be negligible. 

This near wall model is elegant, but inconvenient to implement. Finding Q requires 
determining the eigenvectors and eigenvalues of R. In this paper we consider a simpler 
implementation of Eqn (E.5). In order to gain implementation simplicity we therefore 
assume that Q is isotropic and is scaled by the turbulent kinetic energy, Q.. = Z"'"^... 

With this definition of Q, Eqn (E.4) gives the relation -|- = p~ and the fourth term in 
Eqn. (E.5) is identically zero. Eqn. (E.5) then becomes, 

Ey=2viK''X{K"X^+vKS^X„+K^ (E.7a) 
which is an exact relation. This can alternatively be written as 

ey=2v{K^'X{^)^+KBy (E.7b) 



Note that Eqn. (E.7) only becomes a dissipation tensor model when a quasi-homogeneous 
dissipation tensor model (for Key) is hypothesized. The quasi-homogeneous dissipation 

tensor should be significantly easier to model than the dissipation tensor itself. The 
quasi-homogeneous model is discussed in section 4. In the next section, the near wall 
behavior of Eqn. (E.7) is analyzed. 

3. Asymptotic Analysis Near Boundaries 

The behavior of turbulence quantities near a boundary can be determined by using Taylor 
series expansions in the coordinate direction normal to the boundary (Launder & 
Reynolds^"). Using the convention that y is the direction normal to a wall the fluctuating 
velocity can be expanded as, 
u.=ai(x,z,t) + ybi(x,z,t) + y%ix,z,t) + ... (E.8) 

At a solid wall the velocity goes to zero, so all the a,, are zero. Continuity applied very 

close to the wall implies ^2=0- 

Substituting Eqn (E.8) into the definition for the dissipation tells us that near a wall, 

e,2 = 2v{y(2V^) + );^(3Vr+4^) + /(4Vl+6c,d2+6fi?,C2+V2,i+*i,3C2,3)+-} ^   ^^ 
6^2 =2v{/(4c/) + /(12cjrf2) + /(H' + 16c2ej+C2/ + q/) + ...} 

The £33 component behaves just like £„.    A similar expansion for the Reynolds stress 

tensor can also be performed. 

/?n = /(?) + /(2V^)+... 

^i2 = /(^) + /(Vr+^)+- ^^-^^^ 

The leading order terms in the dissipation tensor and the Reynolds stress tensor are very 
similar. However, the coefficient is different in each case. Rotta's model gets the 0(1) 
terms of the dissipation tensor correctly (i.e. the leading term of the  £„  and e^^ 

expansion), but it will under predict the leading order terms of the other two dissipation 
components. Although the wall is at a low turbulent Reynolds number, Rotta's model 
does not work entirely correctly. The amplitude of fluctuations normal to the wall and 
those parallel to the wall are very different, and the basic assumptions used to derive the 
Rotta model are violated. 

Even if leading order terms of f,2 and £^2 are wrong, does it matter? They still go to 
zero at the wall. Interestingly, if wall functions are not used it matters a great deal (using 
wall functions with a RST model largely defeats the purpose of having a RST model, see 
Speziale^'). Near the wall, the dissipation and pressure-gradient velocity correlation 
exactiy balance the diffusion term. If the leading order behavior of the dissipation is 
incorrect, the Reynolds stresses are too large near the wall and as a result they are also 
too large away from the wall. Trying to reduce these Reynolds stresses via terms in the 
model (rather than fixing the root cause) often leads to instability in the wall bounded 



RST equation system. Note that one reason elliptic relaxation models work well has 
nothing to do with ellipticity. These models allow an extra boundary condition to be 
imposed (because they hypothesize an extra equation). This additional boundary 
condition forces the correct near wall behavior of the Reynolds stresses. In essence, the 
elliptic relation forces the near wall behavior of the dissipation tensor to be correct via 
additional boundary conditions. In standard RST models (where six additional equations 
and their boundary conditions are not available), correct leading order behavior of each 
dissipation term is highly desirable. 

As mentioned earlier, it is also possible to formulate models with the correct near wall 
asymptotics by using the wall normal vector or distance to the wall along with a blending 
function. This works, and is standard practice, but these models have serious deficiencies 
in their generality.   Typically they work only at walls. 

The boundary conditions at a slip wall (or stationary free-surface), impose different 
constraints on the expansion.   We now find that ^, = 02 = ^3 = 0, and continuity implies 

At a stationary free-surface the dissipation behaves as, 
e,i=2v{(ai/ + a,/) + /(^+a,3C,.3 + 4c/)+...} 

En = '2Hy(auA,i + a,,3&2,3 + 2c,ft2) + V^ (01,1^2.1 + ^^+3^ + 4q^)+...} (E- ^ ^ ) 

E2,=2v{(fc/) + >(4^)+...} 

and the Reynolds stress tensor is, 

^22 = /(V) + /(2^) + ... 
At a free-surface there is no longer a clear relationship between the dissipation tensor and 
the Reynolds stress tensor. Rotta's model will cause £^2 to be zero at the surface when it 
should be finite. Also note that a free-surface is no longer a low turbulent Reynolds 
number situation, so blending models (Eqn E.2) will produce the isotropic limit near the 
surface. The isotropic model does give a finite value for ^22 but it will be shown in 
Section 5 that it is far too large, and that the dissipation near a free-surface is not close to 
isotropic. 

The near boundary behavior of the proposed model can be determined from the behavior 
of the Reynolds stresses. For a no-slip wall we find that 

K = y^{b,'+b,') + y^i2b^,+2b^,)+... (E.13) 
and 

(K"\(K"\i = {^f=jr{l + y^^§^+...} (E.14) 

plugging into the model equation (Eqn. E.7) gives. 



e,,=2v[(b,') + yi4b,c,) + 0(y')] + Ke,,   ^_ 

£„=2v{y(2^) + 3'^(3V^+3^+Vl^^) + 0(/)} + /^fa ^   " 

>,, =2v{/(3^) + /(8^+2^i|g) + 0(/)} + /^^,, 

So the proposed expression for the dissipation tensor (Eqn E.7) captures the 0(1) and 
0(y) terms exactly and at least 75% of the O(y^) terms, when implemented near a wall. 
Since K is O(y^) this analysis shows that the quasi-homogeneous dissipation model can 
be as high as 0(1) at the walls, without affecting the near wall asymptotics described 
above. Before considering the behavior of the quasi-homogeneous dissipation tensor in 
any more detail, let us consider the behavior of the proposed decomposition (Eqn. E.7) 
near a free surface. 

Near a free surface the kinetic energy is given by 

and 

ii^f={m'^+^hf+[^(^+'^hf}/[i'^+'^)f + Oiy') (E.17a) 

we can also show that 

K,(^X,=0(y) (E.17b) 

so the near boundary terms in Eqn. (E.7) have the same type of behavior. This requires 
the £i2 model to go like 0(y) near the surface and f22 to be 0(1). Looking at the exact 
expressions for the dissipation tensor near a free-surface it is clear that capturing the 
leading order f,, and £'12 terms exactly is not possible. Derivative information is not 

available to a RST model. However, the leading two terms of the ^22 expression can, in 
theory, be obtained exactly from Reynolds stress information. Also note that the error in 
both the wall and free-surface expressions for £^2 can be represented by ■^/?22 • The error 

is the same irrespective of the boundary type. At both boundaries, the flow becomes two- 
component, so we will use the 2C parameter F to model this missing contribution for ^22 • 
This extra term is 2v(F"^)„(F'")„/?„„<5;../F. Technically we are now modeling the quasi- 

homogeneous dissipation, Ke^. This is the near boundary contribution of the quasi- 

homogeneous dissipation due to the 2C nature of the turbulence near these boundaries. 
This term is higher order for f,, for e^^ terms near both walls and free-surfaces, and so it 
only affects the ^22 dissipation component. At a solid wall, this enhancement has only a 
very small affect on the model. However, at a free surface the 2C affects can be seen 
very clearly. The importance of this 2C correction is demonstrated in Section 5. 



4. Quasi-Homogeneous Dissipation 

In homogeneous turbulence, the boundary (or gradient) terms drop out entirely and the 
quasi-homogeneous dissipation remains to be modeled. Hallback et al)^ show that in 
initially isotropic homogeneous turbulence the dissipation anisotropy should be half of 
the Reynolds stress anisotropy under the action of rapid irrotational strain or shear. This 
will be referred to as the RDT limit. The experiments of Crow^^ and Lee & Reynolds^^ 
show that this ratio does not remain Vi when the turbulence is anisotropic, and in the 
extreme limit of axisymmetric 2C turbulence it is seen to be close to 1 (which is the Rotta 
model). 

The practice of expanding model parameters in polynomial expansions of the potential 
unknowns is a rational way to proceed, and is certainly viable when the unknowns are 
known to be small. However, when the objective is to capture an entire functional range 
the use of polynomial expansions can be detrimental. Rational polynomials have a 
greater fitting capability. In this work, we propose a simple tensorally linear model for 
the quasi-homogeneous dissipation, in which the blending parameter/is a function of F. 
This is similar to the models of Johansson, however we hypothesize a rational polynomial 
expansion, f =-^, rather than a simple polynomial series. This results in the quasi- 

homogeneous model     e..=e{^i5y+-^^) = s{^S,j+-^a.^)  and  a.^=^-^d.j. In 
isotropic turbulence, this model gives the correct RDT anisotropy ratio of V2, and in 2C 
turbulence it gives the correct anisotropy ratio of 1. In theory, a slightly more complex 
blending might be desired in which / = ug^^)F where the function g goes to zero as the 

turbulent Reynolds number becomes small and approaches 1 at high turbulent Reynolds 
numbers. We have not pursued this added level of complexity at this time. 

Finally, we note that the dissipation anisotropy could be a function of the mean flow 
gradients, not just the Reynolds stress anisotropy. Typically, dissipation anisotropy is 
not modeled in this way because one does not expect sudden changes in the mean flow to 
have an instantaneous affect of the dissipation. However, in equilibrium situations, there 
could be a good correlation between the two tensors. Reynolds stresses are frequently 
modeled using this type of hypothesis (eddy viscosity hypothesis of Bousinesq). In fact, 
models which only depend on the Reynolds stress anisotropy will have the dissipation 
anisotropy aligned along the same principal directions as the Reynolds stress anisotropy. 
We know that these anisotropy directions are not always aligned (in channel flow they 
disagree by 8 degrees at y+ =30). In this work we therefore hypothesize that the quasi- 
homogeneous dissipation tensor can also be a linear function of the shear-stress tensor, 

The model for the dissipation tensor then becomes, 

e,:=:2viK''\fR^.+vK^i^),+£^iS,K + e^R. + 2v^^^ (E.18) 

The single parameterC* =0.18F/(1+F)^ is set by comparing the £,2 component of 
turbulent channel flow at Re=590.    In theory, the constant C* should be a function of 



-^, such that C* goes to zero when ^ is zero (the RDT limit). We have not explored 

this level of detail in this work. 

The scalar e = \Sii is the trace of the quasi-homogeneous dissipation. It has units of 

inverse time or frequency and can be obtained by taking one half the trace of Eqn. 18, 

Ke = e-2v(K^'^,n f -3v^'"■"^p"^"'-" .    The quasi-homogeneous dissipation   £   (or its 

closely related form e = Ke) is an interesting inverse timescale that has been used 
previously in some near wall turbulence models (e.g. Launder & Shima,^^). It is 
attractive because at a wall it is finite, whereas the standard inverse timescale ^ is 

singular and goes like y^ at a wall. Note that from its definition, £ is a positive quantity. 
However, due to numerical inaccuracy in the calculation of gradients, calculating e from 
the formula above can lead to large errors or negative values when implemented on a 

' computer. In practical implementation either a transport equation is solved directiy for e 
rather than the more common e transport equation (as in many low Re number k/e 

models), or we sometimes use g = -f-(n.ioHV('A:"^)i/A:) *° guarantee a positive inverse 

timescale with finite near wall behavior. 

While the proposed model (Eqn. E.18) looks somewhat complex, it is relatively easy to 
implement. Many of the terms combine with similar looking terms in the pressure-strain 
model, and if the Reynolds stress anisotropy equation is solved rather than the RST 
equation, then some of the terms drop out or simplify even further. 

It is important when implementing this model to have a numerical method that is capable 
of accurately calculating gradients. At the wall, certain terms should exactly balance. 
Numerically they will only approximately balance and if the disagreement is large 
enough, the numerical implementation (not the model) becomes unstable. Quantities 
with high power law behavior (i?22 = 0{y*)) can be quite hard to differentiate accurately 
with low order numerical methods. For this reason, the anisotropy equations (rather than 
Reynolds stress equations) are somewhat easier to solve with low order numerical 
methods. 

5. Model Results 

In this section, the proposed dissipation model (Eqn. E.18) is compared against 
experimental and DNS data. The performance of the model is compared to a number of 
other dissipation tensor models that have been mentioned in the text. The majority of the 
tests are a priori tests using data for the Reynolds stresses and dissipation plugged 
directly into Eqn 18. 

These tests are a useful way to directly isolate if the model can represent the dissipation 
tensor accurately. However, it is possible to construct models, which perform well in a 
priori tests but do not perform well in practice. These models are unstable and move 
away from the desired solution rather than towards it.   To demonstrate stability we will 
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also present at the end of this section some solutions of turbulent channel flow that use 
this dissipation tensor model in a full RST prediction. 

Our first test case does not involve the inhomogeneous terms at all. It is a test of the 
quasi-homogeneous part of the model. Figure 1 shows the model performance in 
axisymmetric rapid contraction of homogeneous turbulence. In this flow the turbulence 
is initially isotropic and becomes increasingly 2C as time proceeds. Because the 
turbulence is axisymmetric only one component of the dissipation need be analyzed. The 
figure shows the e„ component as a function of a,,, at various times during the 
simulation (experiment). The isotropic model gives a flat line, and the dashed line with a 
slope of 1 is the Rotta model. This is a relatively high Reynolds number test case, so 
models that switch between the isotropic model and the Rotta model based on a blending 
parameter which is a function of the turbulent Reynolds number (most models) will be 
essentially isotropic (very close to a horizontal line through the origin). The HGJ model 
was designed for this flow and therefore performs well for this case. The SJ model (not 
shown) performs very like HGJ. 
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Figure 1. Dissipation anisotropy in axisymmetric contraction. Open triangles 
denote the experimental data of Crow^^ (^'(f = 0) = 0.5-2.0, Re^ =15-100), 
open circles denote the experimental data of Lee & Reynolds" 
(5'(f = 0)«0.97 ?o.0.71,Re^ «50), thick dashed line denotes HGJ model, thin 
line denotes isotropic model, thin dashed line denotes Rotta model, and thick line 
denotes the proposed model. 

Next, we wish to examine the inhomogeneous terms. The quasi-homogeneous term 
cannot be completely eliminated in any flow, but shear-free boundary layers provide an 
opportunity to evaluate the model in a strongly inhomogeneous situation with few other 
complicating effects. In Figure 2, the model predictions of a shear-free boundary layer 
next to a solid wall are compared with DNS data^^ Like the previous case, this flow is 
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axisymmetric and time developing, but unlike the previous case, it also has strong 
gradients in the direction normal to the wall. The figure shows the £^^ dissipation at two 
different times after the wall appears. As predicted by the asymptotic analysis, the Rotta 
model is too small near the wall. The HGJ model transitions from a combination of Vi 
isotropic and Vz Rotta well away from the wall to all Rotta near the wall where the 
turbulence is 2C. The SJ model (not shown) is almost identical to HGJ. Other models 
which blend the isotropic and Rotta models based on the Reynolds number will behave 
like the Rotta model near the wall. All but the proposed model, underpredict the normal 
dissipation component near the wall. 
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Figure 2. Shear-free turbulent boundary layer next to solid wall. Circles denote 
DNS data of Perot & Moin^^, thick dashed line denotes isotropic model, thin dashed 
line denotes Rotta model, thin line denotes HGJ model and thick line denotes 
proposed model. 

The shear-free boundary layer next to stationary free surface is shown in Figure 3. Again 
two times are shown, and the definitions of the lines and symbols are the same as in 
Figure 2. This flow is no longer low Reynolds number near the surface, and so the 
under-prediction of the Rotta and HGJ models is even more obvious in this case. Most 
other models will behave like the isotropic model for this flow. The proposed model 
captures the near-surface dissipation correctly using no adjustable constants. 

In figure 4, the various terms in the present model are split out so the magnitude and 
location of each contribution can be ascertained. Figure 4(a) is the shear-free surface at 
time 2.0 and figure 4(b) is the shear-free wall at time 2.0.   It is clear that the term 

ItRmnf is critical in the free-surface case. involving 2v- 

In Figure 5 the model is tested in turbulent channel flow at Re 590^*^. The proposed 
model performs well for all the dissipation components. The other models have difficulty 
predicting the£r,2 and £22 components. The value of C* was tuned for f,2 in this case. 
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Figure 3. Shear-free turbulent boundary layer next to free-surface. (See Figure 2 
for caption). 
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Figure 4.     Each term in equation 18 for shear-free turbulent boundary layers at 
time 2.0. The chain dotted line denotes 2viK"\nfRy+£-^^^SijK+£-^R.., thin 

line denotes vK^^ (-|-)  , and thick line denotes 2v ^"'^Y"''° KSy. The shear-stress 

term is zero for both these flows. 
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Figure 5. Dissipation tensor in channel flow (Re = 590). Circles denote DNS data 
from Ref 36, long dashed line denotes SJ model, chained dashed line denotes HGJ 
model and thick line denotes proposed model. (In the figure of fjj, thick dashed line 
represents the proposed model without the shear stress term) 

With C* = 0, the small dashed line is obtained. The model predictions for channel flow 
at Re=395 and Re=180 are shown in Figure 6 and Figure 7 respectively. The lowest 
Reynolds number case shows some discrepancies for s^^. This might be fixed by making 
C* a function of elSK as suggested earlier. 

The behavior of the model in rotating channel flow is shown in figure 8. The test case is 
the Ro=0.15 DNS case of Andersson and R. Kristoffersen^^ at a Re of 194. The model 
does a good job of predicting the very different behaviors on each side of the channel 
(especially given the very low Re number of the simulation). 

The proposed model is compared with DNS data for the flow past a backward facing step 
in Figures 9, 10 and 11. Several locations are shown, both before (4h) and near (6h) 
reattachment, and well downstream (lOh) during the boundary layer recovery. The 
figures show good agreement with the DNS data^^ in the tuming mixing layer. The 
boundary layer near the wall is more difficult to see, but behaves similarly to the previous 
channel flow results. In the mixing layer, this tensoraly linear model performs similarly 
(or better in the e^^ case) to the more complex nonlinear model of HGJ and is much more 
accurate than the isotropic and Rotta models. 
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Figure 6.   Dissipation anisotropies in channel Flow (Re = 395). Circles denote 
DNS data frnm Ref 36 and thick line denotes nrnnosed model. 

It is interesting to quantify the effect of the nonlinear term in the SJ and HGJ models. In 
figure 12, these models are shown with fz set to zero, for the 7h downstream location on 
the backward-facing step.   The contribution of the nonlinear term is not that large, given 

fn      '• 

-33 -12 

Figure 7.  Dissipation anisotropies in channel Flow (Re = 180). Circles denote 
DNS data from Ref 36 and thick line denotes proposed model. 

15 



"33 

Figure 8.   Dissipation anisotropies in rotating channel Flow (Ro=0.15, Re = 194). 
Circles denote DNS data from Ref 37 and thick line denotes proposed model. Thin 
line in the last figure is the model with C*=0. 
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Figure 9. Dissipation tensor in the flow over backward-facing step (at 4h). 
Circles denote DNS data from Ref 38, long dashed line denotes the isotropic 
model, chain-dotted line denotes the Rotta model, thin line denotes the SJ model, 
the small dashed line denotes the HGJ model, and the thick line denotes the 
proposed model. 
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Figure 10. Dissipation tensor in the flow over backward-facing step (at 6h). 
Circles denote DNS data from Ref 38, long dashed line denotes the isotropic 
model, chain-dotted line denotes the Rotta model, thin line denotes the SJ model, 
the small dashed line denotes the HGJ model, and the thick line denotes the 
proposed model. 
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Figure 11. Dissipation tensor in the flow over backward-facing step (at lOh). 
Circles denote DNS data from Ref 38, long dashed line denotes the isotropic 
model, chain-dotted line denotes the Rotta model, thin line denotes the SJ model, 
the small dashed line denotes the HGJ model, and the thick line denotes the 
proposed model. 
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Figure 12. Dissipation anisotropies in flow over backward-facing step (at 6h). 
Circles denote DNS data from Ref. 38, chained dashed line denotes SJ model, 
dashed line denotes HGJ model, thin line denotes SJ model without nonlinear term, 
thick line denotes HGJ model without nonlinear term. 

its added complexity we have chosen not to include such a nonlinear term in the proposed 
model. The choice of the function f =-^ allows us to satisfy the RDT limit and 
realizability without the nonlinear term present. 

A priori tests such as those described above can be very informative about the quality of a 
model. Nevertheless, it is possible to formulate models which work well in a priori test 
but which fail in practice due to the inherent instability of the proposed formulation. The 
proposed dissipation model has been incorporated into a full RST closure and solved for 
turbulent channel flow. The details of the fiill RST closure are given in Natu^^. Results 
of these simulations for channel flow at Re=590 are show in Figure 13, and for the 
rotating channel flow case in figure 14. These full model results are highly dependent on 
the chosen pressure-strain model. They are not, therefore, an indication of the accuracy 
of the dissipation tensor model. They are, however, an indication of the dissipation 
tensor model's stability and computability. 

6. Conclusion 

The proposed model for the dissipation tensor deviates from all prior models in its use of 
terms which involve gradients of various turbulence quantities. The appearance of these 
gradient terms is not particularly surprising. There is no reason to believe that the source 
terms in the RST equations should not be functions of such gradients and, in fact, there is 
every reason to believe that gradients should dominate in regions of strong 
inhomogeneity, such as near walls. 
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R:: 

Figure 13.   Channel flow (Re=590). Circles denote DNS data from Ref. 36 and 
thick line denotes full RST model predictions. 

When attempting to add gradient information to a model, the variety of choices is so large 
that the traditional approach of expanding a quantity (such as the dissipation) in terms of 
all the possible unknowns becomes intractable. This paper has demonstrated a rational 
approach to deriving the gradient terms in the model. The resulting terms (Eqn E.7) do 

Figure 14. Full RST prediction of the mean velocity in rotating channel 
flow (Ro=0.15, Re=194). Circles denote DNS data from Ref. 38 and thick 
line denotes the model prediction. 
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not have any additional model constants, but do tend to greatly improve the model 
performance in regions where gradients are large. 

It is interesting to note that the resulting gradient terms do have associations in other 
contexts. The term 2v(K^'^)„(K^'^)„ is a common modification of the dissipation near a 

wall such that time scales at the wall remain finite, and the term vK„(-f)„ appears in the 

Reynolds stress anisotropy transport equation. 

The quasi-homogeneous term in Eqn E.7 is in many senses the harder part of the 
dissipation tensor to model. Our quasi-homogeneous model introduces a parameter to 
represent the affects of mean strain on the dissipation. In theory, this term should only be 
present in equilibrium situations (when production is roughly equal to dissipation). The 
near-wall 2C term does not introduce any addition model constants but is, like the strain 
dependent term, motivated rather than derived. Fortunately, these two modifications are 
not large in most flow situations. The bulk of the dissipation model is carried by the term 
e-^^d:K + e-^R;i. This model satisfies an RDT limit and is realizable in the 2C limit. 

It agrees reasonably well with data from axisymmetric expansion at both small and large 
anisotropies. The key innovation in this term of the model is the functional form of the 
blending parameter/. It is suggested that the common practice of expanding parameters 
in simple polynomial series can be detrimental. Such expansions do not perform well 
when the expansion variable (such as F) is 0(1). 
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i^pendix F: Determination of Model Constants 

To callibrate other model constants like , C^j, C^^ ^^ ^U 'We used steady state DNS 
data for channel flow (Re = 590). First we backed out the constants using the equation 
(14) of the report for each Reynold stress assuming Cp,. 

Using the equation (14) for R^^, we get, 

0 = Cj,[^^/?33j+Cp,[^|Ti533-Ti/?33 ''" '33      ^33 ^ 

dX: 
x3^33^ 

dx, 
(F.l) 

_      (3>/F a>/F — 
IdKdjR,,)        'dx/'dx,     - 3 — 

^""Kdx,   dx,      ^^^ F ^^^'^   ~   i^^^" 
Using equation (F.l), we can get the expected value of Cp2- After that if we put this 

calculated value of Cpj in equation (14) and solve the equation for i?i, we will get the 

expected value for C^j • 

—   P—' 
k 

0 = C|,"^  2S,^+f ^ + C- (2W,^) 

+ CpJ-Ti5„-Tii?„ +/>,-/?„? 

dX: 
(y+Vr) 

J dx, 
(F.2) 

Using calculated values C^jandCjj from equation (F.l) and (F.2) and then solving for 

Ri2, we get expected value of C'j, given by the equation (F.3), 



o=c 
,^ calculated 

P2 

( ^TJ               p  

+c,,(o-Ti^)+:^-:^ 

/ calculated uU   . _, ■—   > 

aXr, 

+ Cp2  S,2 + 
3x.. 9xy 

(F.3) 

:^.2]} 2 
Then we tried to model these constants using different scalar quantities like F and or. 
First we matched the values from different combination of these scalar varients with the 
expected values and then tryied to use them to run the model. After doing this excercise 
for number combinations, the best results we got for the match and for the simulation of 
channel flow (Re=590) using these constant in the model are shown in Figures 1, 2 and 
3. 
The modeled constants are, 

-0.2F Cr, =-^ 0.4F ^p2   — 

V + Vr V + Vr 

C =0.2F^-0.006— 
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Figure 1: Backed out value of C^j from DNS data(channel flow 590) compared with 

modeled value 
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Aifiendix G: PDF ModdResuMsinChaiiiidHow 

The simulation of the proposed RST model has been done for channel flow at different 
Reynolds numbers, to check the validity of the proposed model for dissipation tensor and 
pressure strain. The following figures 1 and 2 show the resulting Reynold stresses from the 
simulation using the proposed RST model till we get a steady state answer for the 
channel flow (Re = 590) 
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Figure 2 (a)Channel Flow(Re = 590)       Figure 2(b)Channel Flow(Re = 590) 

After getting Ry/K, we simlply multiplied it by K to get only R-j and then compared it 

with DNS data. Following figures 3(a), 3(b), 4(a) and 4(b) show the prediction. 
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As can be seen from above figures, the predictions from the model match quite accurately 
with the DNS data. All the Reynolds stresses are modeled very well. The most important 
prediction for a turbulence model is the average velocity. Figure 6 shows model 
predictions of horizontal velocity with DNS data. 
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Figure 6 Channel Flow(Re = 590) 
We also tried to simulate channel flow (Re= 395) using the model, to check the model 
predictions. Results are shown below. 
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.^^ipendix H: FDF ModdBesuttsfcrBomogeiieousShear 

The eddy collision model has been applied to a number of homogeneous shear flows. 
These are experimental or DNS cases. The model given by equation 1 predicts all but the 
rotating cases reasonably well. 
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Figure 4: Eddy collision model applied to homogeneous shear flows.    Symbols are 
exoerimental or DNS data. Lines are the model predictions. 

The model has also been applied to turbulent channel flow at a shear stress Reynolds 
number of 590. The Reynolds stresses and mean flow are given in figure 5. 

The fast pressure-strain constants in the current eddy collision model are given by, 

C ^r Q 2F     C      =:    ^^ (\ AX2    n     —noci     «««^" 

V + Vr 
^ plvi 

V + VT 
-0.4F   C,,. =0.2F^-0.006;r 

where Vj. = C^-^ and F=determinant(/?,j/^) where the Reynolds stress tensor is 

exactly given by /?^. = WyJ and the modified dissipation is given by 

f =f-2t>-^^-^^. The transport constant is C^=0.15. 



The dissipation constants are standard values with modifications for low Reynolds 
numbers and high rotation rates. 

C„ =1.45 C,    C,2=C,(1.83-0.166e ''^ 

l + OllRo    ^^±^^^ 
'   1 + 0.12RO K     "   " 

r3=C,(0.33+0.5f) 

In the oriented model, the dissipation transport equation is not necessary (s-Vk/z^). 



Appendix I: BGK moments 

Conservation of mass (or probability) requires that the integral of the PDF be equivalent 
to one for all time. This means that the integral of its time derivative must be zero. 
Starting from the BGK model for the time derivative of distribution gives the following 
expression. 

|> = -^|(/-(f;rf)-.-"^)av (1.1) 

Since both distributions integrate to 1, we can see that 

i|/av=o (1.2) 
Conservation of momentum requires that no mean flow be created by the relaxation 
process. The mean velocity of the flow is equivalent to the first moment of the PDF. By 
taking the integral over all velocity space, we can show that. 

M^v = -^Jv,.(/-(|;rf)-.-^)3v (1.3) 

Using the fact that the velocity is an independent variable (from time) and splitting the 
velocity into its mean and fluctuating parts gives. 

i ^/^^ = -^{f./^^-«/ la^Ky'^e-^dv- Jv',(|;rf )-^'^.-^av} (1.4) 

By definition J v,./3v = M,. . The second integral on the right hand side is equal to 1 and 

the last integral is zero since it has an odd integrand, so finally 

i".=-7FI7{«.-".-0) = 0 (1.5) 

The Reynolds transport equation is obtained by multiplying the PDF relation equation by 
v',. v'^. and then integrating over all velocity space. 

Iv>'.|av = ^ = -^Jv'V,(/-(|;rie)-e-^)3v (1.6) 
This then becomes 

ijv>'^./av = -^{jv>'./av-(f;rf)--jv»-^av} (1.7) 

Since Jv',. v 'j fdv = R^ by definition, and the last integral must be isotropic 

* = -7l!HK-t^^J (1-8) 



Appendix J: Relaxation Model Moments: 
Here we verify conservation of mass for the relaxation models derived in Section 4 of 
Appendix C. The method is the same as before starting from the relaxation model for the 
PDF. 

l|5v=Jc,(#(f;rfr-.-"^-#^^i^/)av (J.l) 

with    V '(   =  V;   - M; ,    V ',.   =  V,.   - M; . 

Since Jv '„ fdv = 0 we get 

Jl^v = C^#-C^#^^^;^|((u„-«„)K-«J + v>'J/av = 0. (J.3) 

The integrals can be evaluated to give 

Similarly, to verify conservation of momentum we continue as follows. 

Iv,|3v = ^= |c„v,(#(f;r«-"V-'J?-iJ^jiif-/)v (J.5) 

expanding v'„ =(«„-«„)+ v'„ and v,- =M,-1-V',. gives 

^ = C^#M,-C^#^^^;^((«-«l^«, + 2(«„-«J/?,„+2i^«,+ (J.6) 

Conservation requires the above equation be equal to zero, this implies that 

(2ii: + (M-Mf)(M,-M,) = 2i?,,(M„-M„)+Jv»'„/av (J.7) 

From Appendix I, we see that if/is Gaussian, the last term on the right goes to zero, and 
u. = ii. = u. confirming conservation of momentum for Gaussian PDFs. For non- 
Gaussian PDFs the above relation must be satisfied. 

The Reynolds stress transport equation is also derived similarly 

Jv>;|5v = ^=Jc„v>'[#(|;rfr'V"Jf-#;^iij;,/)v (J.8) 

By substituting in the relations v', = v,. - M,  and v',. = v,. - M, the integrals can be reduced, 

since \v'.(j;rKy^'^e~~*^dv = 0 (due to the odd integrand), we get 



3R 5^ = C,t j(v',.v',+ («,.-«,.)(«,-«,))(|;rf)-".- - 8v ^^ ^^^ 

-^M#i^;i:i^((«-«)'^,+2(«„-"jJv>>;/av+jvVv',v>'„/av) 

The first integral is reduced in terms of hats'. 

^ = C.#(f^^,+(",-«,)(",-";)) 
^ ' (J.ll) 

-C^/#I^^;i:iF(("-")'^.;+2(«„-«jJv>>'„/av+Jv>>>'„/3v) 

To ensure the correct dissipation of energy, we require that the model satisfies the 
equationf = i^ = -f. 

+C., 3£ ^((M-M)^^ + («„-M„)Jv»'„/av + ljv»>'„/av) 
(J.12) 

(J.13) 

(J.14) 

This can be simplified to 

^^;j:^((«-«l^ii:+(«„-«jJv>>'„/av+i|v>>>'„/av) 
or finally 

(f+^(«-«r+4r)(2^+(«-")')= 
(«-«)'+^Jv»'„/3v+^Jv,v»;/av 

For an elliptic Gaussian PDF the above equation reduces to 

*+4r=7k^>»'«/^^=^(^«A+2/?„,i?„,) (J.15) 
or alternatively 

This can be rearranged to become 

So if we assume Gaussian form for the PDF, the Reynolds transport equation can be 
written as follows. 

^ = f(l-f+W'(f^'5,)-x(i-|4-^)-'^(/?„„/?^ + 2/?„,/?,) (J.18) 

This simplifies to 

Rearranging into the classic return model form gives 



3K, 
i    >'mn»iii 

_J_ £_p £      "       IK'- K-fH) + F -1+i mn    mn   3 
_e 1 n   D (J.20) 

And when written as follows, the values of CR and CN become apparent. 

St K "-ij       K 

4 I K    "nlKitl 

3    K      ■,^2      ,4. -1 
^ ■ f^i^ni 3 i_i+iAL (^ij-iKS,)+f^:r^(R„Aj-R.RA) •a2i) 



Appendix K:   Moments of a Gaussian PDF 

If we have a PDF, f, of elliptic Gaussian shape we can write the PDF as 

f=[{27rfdct(R„jr'"e-''-''"''"' (K.1) 

Since only R-j is a function of space, this implies that the derivative satisfies 

-^«^ = vi/ (K.2) 
This allows us to write the third moment as a second moment and then apply the chain 
rule. 

jv)v\v'„fdv = -R^\v\v\ifiv = -R^l{^-f^v (K.3) 

By Gauss's divergence theorem the first integral term goes to zero, since/->0 at infinity. 
Differentiating the second term gives, 

Jv»'„ fdv = R^ J/(v', ^„, +v'„ 4)av = /?„„ JvV /av + i?,„ jv\ /9v = 0 (K.4) 

which is what we would expect since the PDF is an even function and the integrand is an 
odd function (cubic). 

The expression (K.2) and the chain rule is also useful for evaluating the fourth moment of 
an elliptic Gaussian. 
jy'n,Kv\v'jfdy = -R,\v'„v\v\^dy = R,\f^^^dy (K.6) 

Taking the derivative gives the fourth moment in terms of the second moments 
= ^J/(v'„v;4+v>'^^+v'„v',<5^)Jv = /?^/?^+i?„,/?„.+/?„,/?„. (K.7) 



Appendix L:   General relaxation moments: 

Here we verify conservation of mass for the more general relaxation models derived in 
Section 6 of Appendix C. The method is the same as before starting from the general 
relaxation model for the PDF, Eq. (C.33). Conservation of mass then requires that the 
right hand side of the zeroth moment be equal to zero. 

fpv=c;,^Jn,,[(2^)'de.(^jr'".-^^'^'^3v-c„^^^,g::;;^^/3v (L.I) 

J|av=c,^n,,-c„^,^,.__.;;^_,^,.fv-„v-./av (L.2) 

Substituting with v\ =v\+ u. - M,. , and recalling that Jv'„ fdv = 0 gives 

j|3v = C„ -n,,-C„ #,.,...,;^^,^^(^ + (". -"-.)(". -»-.)) = 0 (L.4) 

The momentum equation is the first moment 

^ = C.-n,,. Jv,[(2;r)Met(^^)r-e-^^^"^'"^'"av-C.-J^^^-^^^ (L.5) 

^ = C,^j^,u^-C,^^^^^_^^^^^ f(V,+ (», -"J)(v'„+(»„ -^-J)v,/3v (L.6) 

-C„-& ^"^  n—TIR   (U -U ) + R   (U -U ) + (U  —U )(U -U )U ] 

Conservation of momentum therefore requires that 

CM Tic n,-,- «„ = Cw ^— "'"^i"'   n.     ,{ fv'   V'  V'   /9v + Ru^ MlK'-'-ii    p ^ 2*^ 1+K-«-„)(«„-«-,„)^;fr' IJ     m      n      pJ mnp 

which simplifies to 

u \l + (u -u )(u  -a )#^/?r'l = %^ fv' v' v' fdv + u p \   n n / V   m m I n„„     im n,,      ymnpJ p 

+^RTHR   (U -U ) + /?  (u  -u \\ + ^RT^{u  -u Mu -u )u n,v "" \    >np\   n n] np \   m m/J       n,-,     im \   m m}\   n nip 

(L.8) 

(L.9) 

and 

^K (|V„ V„ v'^ /av + R^ («„ -M„) + R,^ (M„ - M„)) 
(L.10) 



Appendix M: General Reynolds transport Equation 

Below, the Reynolds transport equation is derived for the general relaxation model. 

^ — r -L. 
it    ~ ^M 2K 

(M.1) 
Substitution gives 

^ = C^^n,|(v',v>(«,-«,)(«,-«,.))[(2;r)^det(^„jr'^.- 

(M.2) 
3^ 

dt c.^[n.^.na^,-^J(^.-»J-,,„„_,;;;^^n^^Jv>-v-v-„/9v (M.3) 

If we  choose   a„ = M„ and  use  the  general  form  of the  Reynolds  stress  model, 

"aT = -^(n,„, R^j + Uj,„ R„i), we arrive at the following equation. 

-{n,„R„j+Uj„R„,) = C^U„(%+{u,-u,){uj-Uj)-^jv\v'^v\v\fdv)      (M.4) 

Which gives us the definition of R. 

%=-C^(^in.R.J+^JrnKi)-{^,-'^M-'^j) + ^jv\v'jV'„V\fdv (M.5) 


